- PRINT NAME _
- Write version on your blue book and hand in this exam inside your blue book.

VERSION A

- There are a total of 50 points possible.
- ONE PAGE of notes is allowed. No calculators are allowed.
- You must show your work to receive credit.
- 1. (6 pts) Find a matrix T so that, if $\mathbf{x} \in \mathbb{R}^3$ has coordinates \mathbf{c} in the basis

$$\mathbf{v_1} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \mathbf{v_2} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{v_3} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix},$$

then it has coordinates $T\mathbf{c}$ in the standard basis \mathbf{i} , \mathbf{j} , \mathbf{k} for \mathbb{R}^3 .

- 2. (24 pts) A linear transformation from \mathbb{R}^3 to \mathbb{R}^3 is given by $L(\mathbf{x}) = \begin{pmatrix} x_1 x_2 \\ x_2 + x_3 \\ x_1 + x_3 \end{pmatrix}$.
 - (a) What is the kernel of L?
 - (b) Find a set of vectors that span the range of L. (They need not be a basis.)
 - (c) Find a matrix A such that $L(\mathbf{x}) = A\mathbf{x}$.
 - (d) What is the dimension of the range of L? Give a reason for your answer.
- 3. (10 pts) Suppose that $A, B \in \mathbb{R}^{n \times n}$ are nonsingular and that A and B are similar. Prove that A^{-1} and B^{-1} are similar.
- 4. (10 pts) Suppose U is a subspace of \mathbb{R}^n and V is a subspace of U. Prove that U^{\perp} is contained in V^{\perp} .

WARNING: The final exam will probably not be in this room.