- PRINT NAME

- Write version on your blue book and VERSION A hand in this exam inside your blue book.
VERSIUN A
- There are a total of 50 points possible.
- ONE PAGE of notes is allowed. No calculators are allowed.
- You must show your work to receive credit.

1. (6 pts) Find a matrix T so that, if $\mathbf{x} \in \mathbb{R}^{3}$ has coordinates \mathbf{c} in the basis

$$
\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) \quad \mathbf{v}_{\mathbf{3}}=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)
$$

then it has coordinates $T \mathbf{c}$ in the standard basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$ for \mathbb{R}^{3}.
2. (24 pts) A linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} is given by $L(\mathbf{x})=\left(\begin{array}{l}x_{1}-x_{2} \\ x_{2}+x_{3} \\ x_{1}+x_{3}\end{array}\right)$.
(a) What is the kernel of L ?
(b) Find a set of vectors that span the range of L. (They need not be a basis.)
(c) Find a matrix A such that $L(\mathbf{x})=A \mathbf{x}$.
(d) What is the dimension of the range of L ? Give a reason for your answer.
3. (10 pts) Suppose that $A, B \in \mathbb{R}^{n \times n}$ are nonsingular and that A and B are similar. Prove that A^{-1} and B^{-1} are similar.
4. (10 pts) Suppose U is a subspace of \mathbb{R}^{n} and V is a subspace of U. Prove that U^{\perp} is contained in V^{\perp}.

WARNING: The final exam will probably not be in this room.

