- 1. The matrix is $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.
- 2. (a) Set $L(\mathbf{x}) = \mathbf{0}$ and solve for \mathbf{x} . For A, $x_2 = x_1$ and $x_3 = -x_1$. So ker(L) is spanned by $(1, 1, -1)^T$. For B, $x_3 = x_1$ and $x_2 = -x_1$. So ker(L) is spanned by $(1, -1, 1)^T$.
 - (b) There are an infinite number of possibilities. The easiest choice (since it takes little thought and little calculation) is probably $L(\mathbf{i})$, $L(\mathbf{j})$ and $L(\mathbf{k})$ since \mathbf{i} , \mathbf{j} and \mathbf{k} . You can compute the actual values.

(c) A:
$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 B: $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$

- (d) Since the dimension of the range plus the dimension of the kernel equals the dimension of the whole space, we have (ans) + 1 = 3 and so the answer is 2.
- 3. We are given that $B = S^{-1}AS$. Taking inverses, we have

$$B^{-1} = (S^{-1}AS)^{-1} = S^{-1}A^{-1}(S^{-1})^{-1} = S^{-1}A^{-1}S$$

4. This is the same problem on both exams, but the names have been changed. Suppose X is a subspace of Y is a subspace of \mathbb{R}^n . We must prove Y^{\perp} is contained in X^{\perp} .

Suppose that $\mathbf{v} \in Y^{\perp}$. This means that $\mathbf{v}^T \mathbf{w} = 0$ for every $\mathbf{w} \in Y$. Since X is contained in Y, it follows that $\mathbf{v}^T \mathbf{w} = 0$ for every $\mathbf{w} \in X$. Thus $\mathbf{v} \in X^{\perp}$.