1. The matrix is $\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3}\right]$.
2. (a) Set $L(\mathbf{x})=\mathbf{0}$ and solve for \mathbf{x}.

For A, $x_{2}=x_{1}$ and $x_{3}=-x_{1}$. So $\operatorname{ker}(L)$ is spanned by $(1,1,-1)^{T}$. For $\mathrm{B}, x_{3}=x_{1}$ and $x_{2}=-x_{1}$. So $\operatorname{ker}(L)$ is spanned by $(1,-1,1)^{T}$.
(b) There are an infinite number of possibilities. The easiest choice (since it takes little thought and little calculation) is probably $L(\mathbf{i}), L(\mathbf{j})$ and $L(\mathbf{k})$ since \mathbf{i}, \mathbf{j} and k. You can compute the actual values.
(c) A: $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$

B: $\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1\end{array}\right)$
(d) Since the dimension of the range plus the dimension of the kernel equals the dimension of the whole space, we have (ans) $+1=3$ and so the answer is 2 .
3. We are given that $B=S^{-1} A S$. Taking inverses, we have

$$
B^{-1}=\left(S^{-1} A S\right)^{-1}=S^{-1} A^{-1}\left(S^{-1}\right)^{-1}=S^{-1} A^{-1} S
$$

4. This is the same problem on both exams, but the names have been changed. Suppose X is a subspace of Y is a subspace of \mathbb{R}^{n}. We must prove Y^{\perp} is contained in X^{\perp}.
Suppose that $\mathbf{v} \in Y^{\perp}$. This means that $\mathbf{v}^{T} \mathbf{w}=0$ for every $\mathbf{w} \in Y$. Since X is contained in Y, it follows that $\mathbf{v}^{T} \mathbf{w}=0$ for every $\mathbf{w} \in X$. Thus $\mathbf{v} \in X^{\perp}$.
