- There are a total of 80 points possible.
- TWO PAGES of notes are allowed. No calculators are allowed.
- You must show your work to receive credit.

1. (12 pts) (a) Find the eigenvalues of the matrix $\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right)$.
(b) Find an eigenvector for each eigenvalue.
2. (12 pts) Let W be the subspace of \mathbb{R}^{5} spanned by $\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 0 \\ 0 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}0 \\ 2 \\ 0 \\ -2 \\ 1\end{array}\right)$.
(a) Find an orthonormal basis for W.
(b) Write $(9,99,9,9)^{T}$ as a sum of a vector in W and a vector in W^{\perp}.
3. $(6 \mathrm{pts}) L\left((a, b, c)^{T}\right)=a x(x-1)+b x+c$ defines a linear transformation L from \mathbb{R}^{3} to P_{3}. Find a matrix for L using the standard basis for \mathbb{R}^{3} and the basis $1, x, x^{2}$ for P_{3}.
4. (12 pts) A matrix $A \in \mathbb{R}^{4 \times 4}$ has eigenvalues $1,-1,2$ and 3 . What are the eigenvalues and determinants of the following matrices?
(i) A^{-1}
(ii) A^{T}
(iii) $A^{2}-A$.
5. (10 pts) Let \mathbf{v} and \mathbf{w} be nonzero vectors in \mathbb{R}^{n}. Define $A \in \mathbb{R}^{n \times n}$ by $A=\mathbf{v w}^{T}$. Prove that \mathbf{v} is a basis for the column space of A.
Hint: What is column k of A in terms of \mathbf{v} and \mathbf{w} ?
6. (10 pts) Given three matrices $A, B, C \in \mathbb{R}^{3 \times 4}$ a student was told to compute a basis for the row space of each matrix and a basis for the null space of each matrix. The following answers were turned in.

	Row Space	Null Space
matrix $A:$	$(1,0,0,0)$	
	$(0,1,-1,0)$	$\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right)$
matrix $B:$	$(1,0,0,0)$	$\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right)$
	$(0,1,-1,0)$	$0,1)$
matrix $C:$	$(1,0,0,0)$	$\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$

The grader marked two answers wrong and one answer correct. It is possible to tell which answers are wrong without even knowing the matrices A, B, C !

Question: Which two answers must be wrong and why?
7. (12 pts) Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, define $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} A^{T} A \mathbf{y}$. Prove that this makes \mathbb{R}^{n} into an inner product space. That is, verify the three conditions in the definition of an inner product space:
(i) $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$ with equality if and only if $\mathbf{x}=\mathbf{0}$.
(ii) $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^{n}.
(iii) $\langle\alpha \mathbf{x}+\beta \mathbf{y}, \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{z}\rangle+\beta\langle\mathbf{y}, \mathbf{z}\rangle$ for all \mathbf{x}, \mathbf{y} and \mathbf{z} in \mathbb{R}^{n} and all scalars α and β.
8. (6 pts) Let $A=(1,0)$. It is easily seen that

$$
\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=0 \quad \text { and } \quad \operatorname{det}\left(A A^{T}\right)=\operatorname{det}(1)=1 .
$$

What is wrong with the following proof that $0=1$?

$$
0=\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=\operatorname{det}\left(A A^{T}\right)=1
$$

