- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK except for one page of notes.
- Calculators are NOT allowed.
- You must show your work to receive credit.

1. ( 6 pts.$)$ The row echelon form of the matrix $A$ is

$$
\left[\begin{array}{lllll}
\mathbf{\square} & * & * & * & * \\
0 & 0 & 0 & \boxed{ } & * \\
0 & 0 & 0 & 0 & \mathbf{\square} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where $\llbracket$ is any nonzero number and $*$ is any number.
(a) Does $A \mathbf{x}=\mathbf{0}$ have nontrivial solutions? You must give a reason to receive credit.
(b) Does $A \mathbf{x}=\mathbf{b}$ have at least one solution for every $\mathbf{b} \in \mathbb{R}^{4}$ ? You must give a reason to receive credit.
2. (12 pts.) Let $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & -1 & 1\end{array}\right]$. In each case, compute the indicated quantity or explain why it is undefined.
(a) $A+A^{T}$
(b) $A^{2}$
(c) $A A^{T}$
(d) $A^{-1}$.
3. (10 pts.) Write down the augmented matrix for the following linear equations and use it to find all solutions to the equations.

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{3}=2 \\
2 x_{1}+x_{2}-2 x_{3}=4 \\
x_{1}-4 x_{2}+8 x_{3}=2
\end{array}
$$

(To help avoid errors, you can check that your solution works in the equations.)
4. (6 pts.) You need not give reasons in this problem.
(a) For what values of $p$ is it possible to find $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{4}$ so that that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ $\operatorname{span} \mathbb{R}^{4}$ ?
(b) For what values of $p$ is it possible to find $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{4}$ so that that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are linearly independent?
5. (4 pts.) A matrix $B$ is called symmetric if $B^{T}=B$. Let $A$ be an $n \times p$ matrix. Prove that $A^{T} A$ is defined and is a symmetric $p \times p$ matrix.

