1. (a) Yes, because x_{2} and x_{3} are free variables.
(b) No, because there is a row of zeros. (When the augmented matrix is put in row echelon form, the last column can be anything, depending on the choice of \mathbf{b} and so the last equation will become "zero $=$ anything".
2. (a) Undefined: A is 2×3 but A^{T} is not.
(b) Undefined: for $B C$ to be defined, the number of rows of C must equal the number of columns of B. With $A=B=C$, this is not true.
(c) $\left[\begin{array}{cc}5 & -2 \\ -2 & 2\end{array}\right]$.
(d) Undefined: To have an inverse, a matrix must have the same number of rows and columns.
3. The augmented matrix and reduction to row echelon form:

$$
\left[\begin{array}{cccc}
1 & -1 & 2 & 2 \\
2 & 1 & -2 & 4 \\
1 & -4 & 8 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & -1 & 2 & 2 \\
0 & 3 & -6 & 0 \\
0 & -3 & 6 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & -1 & 2 & 2 \\
0 & 3 & -6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus x_{3} is a free variable. The second row tells us that $x_{2}=2 x_{3}$. The first row tells us that $x_{1}=2+x_{2}-2 x_{3}=2$. Thus we have

$$
x_{1}=2 \quad x_{2}=2 x_{3} \quad x_{3} \text { free. }
$$

4. (a) all $p \geq 4$
(b) all $p \leq 4$
5. Since the number of columns of A^{T} equals the number of rows of A, the product is defined. Since A^{T} has p rows and A has p columns, $A^{T} A$ is $p \times p$. Recalling that $(B C)^{T}=C^{T} B^{T}$ and $\left(B^{T}\right)^{T}=B$, we have

$$
\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A
$$

