- Please put your name and ID number on your blue book.
- The exam is CLOSED BOOK except for one page of notes.
- Calculators are NOT allowed.
- You must show your work to receive credit.

1. (16 pts.) A and B are 3×3 matrices, $\operatorname{det} A=3$ and $\operatorname{det} B=2$. For each of the following, give its value if you have enough information. If you do not have enough information say "not enough information."
(a) $\operatorname{det}\left(A^{-1}\right)$
(b) $\operatorname{rank}(\mathrm{A})$
(c) $\operatorname{det}(A+B)$
(d) $\operatorname{det}\left(A^{T} B\right)$
2. (7 pts.) Find the eigenvalues of $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]$.
3. (7 pts.) The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ -x_{1}\end{array}\right]$. Let \mathcal{B} be the basis $\mathbf{b}_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Compute $[T]_{\mathcal{B}}$.
4. (20 pts.) A is a 8×8 matrix with characteristic polynomial $\lambda^{2}(\lambda-1)^{3}(\lambda+2)^{3}$. Two of the eigenspaces are each two dimensional-but I don't know which two.
(a) What values are possible for the dimension of the third eigenspace?
(b) Is it possible that A is diagonalizable? To receive credit, you must give a reason for your answer.
(c) Is it possible that A is singular? To receive credit, you must give a reason for your answer.
(d) For what values of c is it possible to find a nonzero vector $\mathbf{v} \in \mathbb{R}^{8}$ such that $A \mathbf{v}=c \mathbf{v}$?
