1. (a) $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)=1 / 3$.
(b) $A$ has full rank since it is nonsingular. Thus rank $A=3$.
(c) not enough information
(d) $\operatorname{det}\left(A^{T} B\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}(B)=\operatorname{det}(A) \operatorname{det}(B)=6$.
2. Since $\operatorname{det}(A-\lambda I)=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)$, the eigenvalues are 2 and -1 .
3. Recall that $[T]_{\mathcal{B}}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{B}}\left[\mathbf{b}_{2}\right]_{\mathcal{B}}\right]$. Since $T\left(\mathbf{b}_{1}\right)=\left[\begin{array}{l}0 \\ 1\end{array}\right]=\mathbf{b}_{2}$ and $T\left(\mathbf{b}_{2}\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]=-\mathbf{b}_{1}+\mathbf{b}_{2}$, we have $[T]_{\mathcal{B}}=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$.
4. (a) Since the dimension of an eigenspace cannot exceed the multiplicity of a root of the characteristic polynomial, it is at most 3 . Thus the possible values are 1,2 and 3.
(b) No. The sum of the dimensions of the eigenspaces is at most $2+2+3=7$, which is less than 8 , the size of $A$.
(c) It must be singular since zero is an eigenvalue.
(d) The only possible values are the eigenvalues, namely 0,1 and -2 .
