1. (10 pts.) Define the following
(a) The span of the vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$.
(b) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
2. (30 pts.) Let $A=\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & 2 & 1 & 3\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$.
(a) Describe all solutions to the equation $A \vec{x}=\overrightarrow{0}$.
(b) Describe all solutions to the equation $A \vec{x}=\vec{b}$.
3. (45 pts.) The reduced row echelon form for the matrix A is $M=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$.

For each of the following answer either "Yes," "No," or "Not enough information." Note that all the questions are about A, not about M.
To receive credit you must justify your answers.
(a) The columns of A are linearly independent.
(b) The equation $A \vec{x}=\overrightarrow{0}$ has more than one solution.
(c) The equation $A \vec{x}=\left[\begin{array}{l}3 \\ 2 \\ 1 \\ 0\end{array}\right]$ has more than one solution.
4. (15 pts.) Prove the following:

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation which is both one-to-one and onto, then $m=n$.

Hint: Prove that one-to-one implies that $n \leq m$.
Prove that onto implies that $n \geq m$.

