- 1. See pages 212 and 107, respectively.
- 2. Since columns 1, 2 and 5 are pivot columns, we can compute the dimensions:

$$\dim(\operatorname{Col} A) = \dim(\operatorname{Row} A) = 3$$
 and $\dim(\operatorname{Nul} A) = 2$.

The first, second and fifth columns of A are a basis for $\operatorname{Col} A$.

The nonzero rows of the reduced echelon form are a basis for Row A.

A basis for Nul A is
$$\begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} -3 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$.

- 3. (a) There is not enough information because an elementary row operation may multiply a row by a constant. For example $A + I_6$ and the matrix that equals I_6 except that $a_{1,1} = -4$ both have I_6 for reduced row echelon form. The determinants are 1 and -4.
 - (b) Yes. Reduced echelon form being the identity is equivalent to the existence of the inverse. (Theorem 3.7 or 3.8b)
 - (c) Yes. We know that the existence of the inverse guarantees unique solutions to $A\vec{x} = \vec{b}$. (Theorem 3.5) There are other arguments, too.
 - (d) Yes. We are given $\dim(\operatorname{Nul} A) = 3$. Hence $\dim(\operatorname{Col} A) = 8 3 = 5$. Since $\operatorname{Col} A$ is the set of possible constant terms and is not all of \mathbb{R}^6 , inconsistent \vec{b} exist. Instead of the last sentence one could observe that since there are only 5 pivots, the echelon form of A will have 6 5 = 1 rows that are all zero.
- 4. (a) Let the *i*th component of \vec{b}_j be $b_{i,j}$. The *j*th column of AB is $A\vec{b}_j = b_{1,j}\vec{a}_1 + \ldots + b_{n,j}\vec{a}_n$, a linear combination of the columns of A. Hence $A\vec{b}_j$ is in Col A.
 - (b) Since every column of AB is in $\operatorname{Col} A$, it follows that $\operatorname{Col} (AB)$ is a subspace of $\operatorname{Col} A$. Hence $\dim(\operatorname{Col} (AB)) \leq \dim(\operatorname{Col} A)$. Since $\dim\operatorname{Col}$ is rank, we are done.
 - (c) We have $\operatorname{rank}(AB) = \operatorname{rank}((AB)^T) = \operatorname{rank}(B^TA^T)$. Now use (b) with A and B replaced by B^T and A^T respectively to obtain $\operatorname{rank}(B^TA^T) \leq \operatorname{rank}(B^T)$. We also have $\operatorname{rank}(B^T) = \operatorname{rank}(B)$. Putting all this together, $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$.