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Sample spaces and events

Flip a coin 3 times. The possible outcomes are
HHH HHT HTH HTT THH THT TTH TTT

The sample space is the set of all possible outcomes:
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

An event is any subset of S.
The event that there are exactly two heads is

A = {HHT, HTH, THH}

The probability of heads is p and of tails is q = 1 − p. The flips are
independent, which gives these probabilities for each outcome:

P(HHH) = p3 P(HHT) = P(HTH) = P(THH) = p2q
P(TTT) = q3 P(HTT) = P(THT) = P(TTH) = pq2

These are each between 0 and 1, and they add up to 1:
p3 + 3p2q + 3pq2 + q3 = (p + q)3 = 13 = 1
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Sample spaces and events

Flip a coin 3 times. The possible outcomes are
HHH HHT HTH HTT THH THT TTH TTT

The sample space is the set of all possible outcomes:
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

An event is any subset of S.
The event that there are exactly two heads is

A = {HHT, HTH, THH}

The probability of heads is p and of tails is q = 1 − p. The flips are
independent, which gives these probabilities for each outcome:

P(HHH) = p3 P(HHT) = P(HTH) = P(THH) = p2q
P(TTT) = q3 P(HTT) = P(THT) = P(TTH) = pq2

The probability of an event is the sum of probabilities of its
outcomes:

P(A) = P(HHT) + P(HTH) + P(THH) = 3p2q
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Random variables

A random variable X is a function assigning a real number to each
outcome.

Let X be the number of heads:
X(HHH) = 3 X(HHT) = X(HTH) = X(THH) = 2
X(TTT) = 0 X(HTT) = X(THT) = X(TTH) = 1

The range of X is {0, 1, 2, 3}.

That range is a discrete set as opposed to a continuum, such as
all real numbers [0, 3]. So X is a discrete random variable.

The discrete probability density function (pdf) or probability mass
function (pmf) is pX(k) = P(X = k), defined for all real numbers k:

pX(0) = q3 pX(1) = 3pq2 pX(2) = 3p2q pX(3) = p3

pX(k) = 0 otherwise: pX(2.5) = 0 pX(−1) = 0

Use capital letters (X) for random variables and lowercase (k) to
stand for numeric values.
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Joint probability density

Measure several properties at once using multiple random
variables:

X = # heads
Y = position of first head (1,2,3) or 4 if no heads

HHH: X = 3, Y = 1 THH: X = 2, Y = 2
HHT: X = 2, Y = 1 THT: X = 1, Y = 2
HTH: X = 2, Y = 1 TTH: X = 1, Y = 3
HTT: X = 1, Y = 1 TTT: X = 0, Y = 4

Reorganize as a two dimensional table:
X = 0 X = 1 X = 2 X = 3

Y = 1 HTT HHT, HTH HHH
Y = 2 THT THH
Y = 3 TTH
Y = 4 TTT
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Joint probability density

The (discrete) joint probability density function is
pX,Y(x, y) = P(X = x, Y = y):

Total
pX,Y(x, y) x = 0 x = 1 x = 2 x = 3 pY(y)

y = 1 0 pq2 2p2q p3 p
y = 2 0 pq2 p2q 0 pq
y = 3 0 pq2 0 0 pq2

y = 4 q3 0 0 0 q3

Total pX(x) q3 3pq2 3p2q p3 1

It’s defined for all real numbers. It equals zero outside the table.
In table: pX,Y(3, 1) = p3 Not in table: pX,Y(1,−.5) = 0

Row totals: pY(y)=
∑

x pX,Y(x, y) Columns: pX(x)=
∑

y pX,Y(x, y)

These are in the right and bottom margins of the table, so pX(x),
pY(y) are called marginal densities of the joint pdf pX,Y(x, y).
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Joint probability density — marginal density

Total
pX,Y(x, y) x = 0 x = 1 x = 2 x = 3 pY(y)

y = 1 0 pq2 2p2q p3 p
y = 2 0 pq2 p2q 0 pq
y = 3 0 pq2 0 0 pq2

y = 4 q3 0 0 0 q3

Total pX(x) q3 3pq2 3p2q p3 1

Row totals
Row total for y = 1:

pq2 + 2p2q + p3 = p(q2 + 2pq + p2) = p(q + p)2 = p · 12 = p

Row total for y = 2:
pq2 + p2q = pq(p + q) = pq · 1 = pq

Or, for y = 1, 2, 3, the probability that the first heads is flip # y is
P(Y = y) = P(y − 1 tails followed by heads) = qy−1p

and the probability of no heads is P(Y = 4) = P(TTT) = q3.
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Conditional probability

Bob flips a coin 3 times and tells you that X = 2 (two heads), but
no further information.
What does that tell you about Y (flip number of first head)?

The possible outcomes with X = 2 are HHT, HTH, THH,
each with the same probability p2q.

We’re restricted to three equally likely outcomes HHT, HTH, THH:

Probability Y = 1 is 2/3 (HHT, HTH)
Probability Y = 2 is 1/3 (THH)
Other values of Y are not possible

These are called conditional probabilities.
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Conditional probability formula

You know that event B holds. What’s the probability of event A?

Conditional Probability Formula
The conditional probability of A, given B, is

P(A|B) =
P(A and B)

P(B)
=

P(A ∩ B)
P(B)

The probability that Y = 1 given X = 2 is P(Y = 1 | X = 2):
The event Y = 1 is A = {HHH, HHT, HTH, HTT}.
The event X = 2 is B = {HHT, HTH, THH}.

P(Y = 1 | X = 2) =
P(X = 2 and Y = 1)

P(X = 2)

=
P({HHT, HTH})

P({HHT, HTH, THH})
=

2p2q
3p2q

=
2
3
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Conditional probability formula

Bayes’ Theorem
The conditional probability of A, given B, is

P(A|B) =
P(A and B)

P(B)
=

P(A ∩ B)
P(B)

The conditional probability that Y = y given that X = x is

P(Y = y |X = x) =
P(Y = y and X = x)

P(X = x)
=

pX,Y(x, y)

pX(x)

P(Y = 1 |X = 2) =
pX,Y(2, 1)

pX(2)
=

2p2q
3p2q

=
2
3
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Independent random variables

In the previous example, knowing X = 2 affected the probabilities
of the values of Y. So X and Y are dependent .

Discrete random variables U, V, W are independent if
P(U = u, V = v, W = w) = P(U = u)P(V = v)P(W = w)

factorizes for all values of u, v, w, and dependent if there are any
exceptions. This generalizes to any number of random variables.

In terms of conditional probability, X and Y are independent if
P(Y = y|X = x) = P(Y = y) for all x, y (with P(X = x) , 0).

Examples of independent random variables
Let U, V, W denote three flips of a coin, coded 0=tails, 1=heads.
Let X1, . . . , X10 denote the values of 10 separate rolls of a die.

Example of dependent random variables
Drawing cards U, V from a deck without replacement (so V , U).
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Permutations of distinct objects

Permutations
Here are all the permutations of A, B, C:

ABC ACB BAC BCA CAB CBA

There are 3 items: A, B, C.
There are 3 choices for which item to put first.
There are 2 choices remaining to put second.
There is 1 choice remaining to put third.
Thus, the total number of permutations is 3 · 2 · 1 = 6.

Factorials
The number of permutations of n distinct items is “n-factorial”:
n! = n(n − 1)(n − 2) · · · 1 for integers n = 1, 2, . . .
0! = 1
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Permutations with repetitions

Here are all the permutations of the letters of ALLELE:

EEALLL EELALL EELLAL EELLLA EAELLL EALELL
EALLEL EALLLE ELEALL ELELAL ELELLA ELAELL
ELALEL ELALLE ELLEAL ELLELA ELLAEL ELLALE
ELLLEA ELLLAE AEELLL AELELL AELLEL AELLLE
ALEELL ALELEL ALELLE ALLEEL ALLELE ALLLEE
LEEALL LEELAL LEELLA LEAELL LEALEL LEALLE
LELEAL LELELA LELAEL LELALE LELLEA LELLAE
LAEELL LAELEL LAELLE LALEEL LALELE LALLEE
LLEEAL LLEELA LLEAEL LLEALE LLELEA LLELAE
LLAEEL LLAELE LLALEE LLLEEA LLLEAE LLLAEE
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Permutations with repetitions

There are 6! = 720 ways to permute the subscripted letters
A1, L1, L2, E1, L3, E2.
Here are all the ways to put subscripts on EALLEL:

E1A1L1L2E2L3 E1A1L1L3E2L2 E2A1L1L2E1L3 E2A1L1L3E1L2

E1A1L2L1E2L3 E1A1L2L3E2L1 E2A1L2L1E1L3 E2A1L2L3E1L1

E1A1L3L1E2L2 E1A1L3L2E2L1 E2A1L3L1E1L2 E2A1L3L2E1L1

Each rearrangement of ALLELE has
1! = 1 way to subscript the A’s;
2! = 2 ways to subscript the E’s; and
3! = 6 ways to subscript the L’s,

giving 1! · 2! · 3! = 1 · 2 · 6 = 12 ways to assign subscripts.
Since each permutation of ALLELE is represented 12 different
ways in permutations of A1L1L2E1L3E2, the number of
permutations of ALLELE is

6!
1! 2! 3! =

720
12 = 60.
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Multinomial coefficients

For a word of length n with k1 of one letter, k2 of a second letter, etc.,
the number of permutations is given by the multinomial coefficient:(

n
k1, k2, . . . , kr

)
=

n!
k1! k2! · · · kr!

where n, k1, k2, . . . , kr are integers > 0 and n = k1 + · · ·+ kr.

Previous slide example: ALLELE
n = 6 letters, with 1 A, 2 E’s, 3 L’s:(

6
1, 2, 3

)
=

6!
1! 2! 3!

=
720
12

= 60
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Mass Spectrometry (Mass Spec)
Peptide [242.3]D[I,L]SED[Q,K]D[I,L][Q,K]AEVN; Figure courtesy Nuno Bandeira

Figure D-95: MS/MS spectrum for peptide D[I,L]SED[Q,K]D[I,L][Q,K]AEVNK
(040903 CROAT rat.8531.8552.2.pkl).

Figure D-96: MS/MS spectrum for peptide [242.3]D[I,L]SED[Q,K]D[I,L][Q,K]AEVN
(040903 CROAT rac.8349.8355.4.pkl).

58
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Mass Spectrometry

Peptide ABCDEF is ionized into fragments
A / BCDEF, AB / CDEF, etc.

giving a spectrum with intermingled peaks:

b-ions: b1 =mass(A), b2 =mass(AB), . . . , b6 =mass(ABCDEF)
successively separated by mass(B), mass(C), . . . , mass(F)

y-ions: y1 =mass(F), y2 =mass(EF), . . . , y6 =mass(ABCDEF)
successively separated by mass(E), mass(D), . . . , mass(A)

Plus more peaks (multiple fragments, ± smaller chemicals, etc.).
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Mass Spectrometry — Amino Acid Composition
List of the 20 amino acids
Amino Acid Code Mass (Daltons) Amino Acid Code Mass (Daltons)
Alanine A 71.037113787 Leucine L 113.084063979
Arginine R 156.101111026 Lysine K 128.094963016
Aspartic acid D 115.026943031 Methionine M 131.040484605
Asparagine N 114.042927446 Phenylalanine F 147.068413915
Cysteine C 160.030648200 Proline P 97.052763851
Glutamic acid E 129.042593095 Serine S 87.032028409
Glutamine Q 128.058577510 Threonine T 101.047678473
Glycine G 57.021463723 Tryptophan W 186.079312952
Histidine H 137.058911861 Tyrosine Y 163.063328537
Isoleucine I 113.084063979 Valine V 99.068413915

Note mass(I)=mass(L), mass(N)=mass(GG) and
mass(GA)=mass(Q)≈mass(K).
A fragment of mass ≈ 242.3 could be
mass(NE) = 243.09 mass(LQ) = 241.14 mass(KI) = 241.18
mass(GGE) = 243.09 mass(GAL) = 241.14

Or any permutations of those since they have the same mass:
NE, EN, LQ, QL, KI, IK, GGE, GEG, EGG, GAL, GLA, ALG, etc.
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Multinomial distribution

Consider a biased 6-sided die:
qi is the probability of rolling i, for i = 1, 2, . . . , 6.
Each qi is between 0 and 1, and q1 + · · ·+ q6 = 1.
6 sides is an example; it could be any # sides.

The probability of a sequence of independent rolls is

P(1131326) = q1 q1 q3 q1 q3 q2 q6 = q1
3 q2 q3

2 q6 =

6∏
i=1

qi
# i’s

Roll the die n times (n = 0, 1, 2, 3, . . .).
Let X1 be the number of 1’s, X2 be the number of 2’s, etc.

pX1,X2,...,X6
(k1, k2, . . . , k6) = P(X1 = k1, X2 = k2, . . . , X6 = k6)

=


( n

k1,k2,...,k6

)
q1

k1q2
k2 . . . q6

k6

if k1, . . . , k6 are integers > 0 adding up to n;

0 otherwise.
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Binomial coefficients

Suppose you flip a coin n = 5 times. How many sequences of flips are
there with k = 3 heads? Ten:

HHHTT HHTHT HHTTH HTHHT HTHTH
HTTHH THHHT THHTH THTHH TTHHH

Definition (Binomial coefficient)

“n choose k” =
(n

k

)
= n!

k!(n−k)!
provided n, k are integers and 0 6 k 6 n.(n

0

)
= 1

Some people use nCk instead of
(n

k

)
.

Binomial coefficient
(n

k

)
= multinomial coefficient

( n
k,n−k

)
.

Top of slide:
(5

3

)
= 5!

3!(5−3)! =
120

(6)(2) = 10.

Prof. Tesler Permutations, binomial, expected values Math 283 / Fall 2019 20 / 51



Binomial distribution

A biased coin has probability p of heads, q = 1 − p of tails.

Flip the coin n times (n = 0, 1, 2, 3, . . .).

P(HHTHTTH) = ppqpqqp = p4q3 = p# headsq# tails

Let X be the number of heads in the n flips.
The probability density function (pdf) of X is

pX(k) = P(X = k) =

{(n
k

)
pkqn−k if k = 0, 1, . . . , n;

0 otherwise.

It’s > 0 and the total is
∑n

k=0
(n

k

)
pkqn−k = (p + q)n = 1n = 1.

Interpretation: Repeat this experiment (flipping a coin n times
and counting the heads) a huge number of times. The fraction of
experiments with X = k will usually be approximately pX(k).
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Binomial distribution for n = 10, p = 3/4

pX(k) =

{(10
k

)
(3/4)k(1/4)10−k if k = 0, 1, . . . , 10;

0 otherwise.

k pdf
0 0.00000095
1 0.00002861
2 0.00038624
3 0.00308990
4 0.01622200
5 0.05839920
6 0.14599800
7 0.25028229
8 0.28156757
9 0.18771172

10 0.05631351
other 0

0 5 10
0

0.2

0.4

0.6

0.8

1

k

p X
(k

)

Discrete probability density function
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Where the distribution names come from
Binomial Theorem
For integers n > 0,

(x + y)n =

n∑
k=0

(
n
k

)
xkyn−k

(x + y)3 =
(3

0

)
x0y3 +

(3
1

)
x1y2 +

(3
2

)
x2y1 +

(3
3

)
x3y0 = y3 + 3xy2 + 3x2y + x3

Multinomial Theorem
For integers n > 0,

(x + y + z)n =

n∑
i=0

n∑
j=0

n∑
k=0︸         ︷︷         ︸

i+j+k=n

(
n

i, j, k

)
xiy jzk

(x + y + z)2 =
( 2

2,0,0

)
x2y0z0 +

( 2
0,2,0

)
x0y2z0 +

( 2
0,0,2

)
x0y0z2

+
( 2

1,1,0

)
x1y1z0 +

( 2
1,0,1

)
x1y0z1 +

( 2
0,1,1

)
x0y1z1

= x2 + y2 + z2 + 2xy + 2xz + 2yz

(x1 + · · ·+ xm)
n works similarly with m iterated sums.
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Genetics example

Consider a cross of two pea plants.
We will study the genes for plant height (alleles T=tall, t=short)
and pea shape (R=round, r=wrinkled).
T,R are dominant and t,r are recessive.
The T and R loci are on different chromosomes so these
recombine independently.
Consider a TtRR×TtRr cross of pea plants:

Punnett Square
TR (1/2) tR (1/2)

TR (1/4) TTRR (1/8) TtRR (1/8)
Tr (1/4) TTRr (1/8) TtRr (1/8)
tR (1/4) TtRR (1/8) ttRR (1/8)
tr (1/4) TtRr (1/8) ttRr (1/8)

Genotype Prob.
TTRR 1/8
TtRR 2/8 = 1/4
TTRr 1/8
TtRr 2/8 = 1/4
ttRR 1/8
ttRr 1/8
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Genetics example

If there are 27 offspring, what is the probability that 9 offspring have
genotype TTRR, 2 have genotype TtRR, 3 have genotype TTRr, 5
have genotype TtRr, 7 have genotype ttRR, and 1 has genotype ttRr?

Use the multinomial distribution:

Genotype Probability Frequency
TTRR 1/8 9
TtRR 1/4 2
TTRr 1/8 3
TtRr 1/4 5
ttRR 1/8 7
ttRr 1/8 1
Total 1 27

P =
27!

9! 2! 3! 5! 7! 1!

(
1
8

)9(1
4

)2(1
8

)3(1
4

)5(1
8

)7(1
8

)1

≈ 2.19 · 10−7
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Genetics example

If there are 25 offspring, what is the probability that 9 offspring have
genotype TTRR, 2 have genotype TtRR, 3 have genotype TTRr, 5
have genotype TtRr, 7 have genotype ttRR, and 1 has genotype ttRr?

P = 0 because the numbers 9, 2, 3, 5, 7, 1 do not add up to 25.

Prof. Tesler Permutations, binomial, expected values Math 283 / Fall 2019 26 / 51



Genetics example
Genotype Probability Phenotype

TTRR 1/8 tall and round
TtRR 1/4 tall and round
TTRr 1/8 tall and round
TtRr 1/4 tall and round
ttRR 1/8 short and round
ttRr 1/8 short and round

For phenotypes,
P(tall and round) = 1/8 + 1/4 + 1/8 + 1/4 = 3/4
P(short and round) = 1/8 + 1/8 = 1/4
P(tall and wrinkled) = P(short and wrinkled) = 0

If there are 10 offspring, the number of tall offspring has a binomial
distribution with n = 10, p = 3/4.

Later: We’ll cover other Bioinformatics applications using the binomial
distribution, including genome assembly and Haldane’s model of
recombination.
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Expected value of a random variable
(Technical name for long term average)

Consider a biased coin with probability p = 3/4 for heads.

Flip it 10 times and record the number of heads, x1.
Flip it another 10 times, get x2 heads.
Repeat to get x1, · · · , x1000.

Estimate the average of x1, . . . , x1000: 10(3/4) = 7.5

An estimate based on the pdf:
About 1000pX(k) of the xi’s equal k for each k = 0, . . . , 10, so

average of xi’s =

1000∑
i=1

xi

1000
≈

10∑
k=0

k · 1000 pX(k)

1000
=

10∑
k=0

k · pX(k)
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Expected value of a random variable
(Technical name for long term average)

The expected value of a discrete random variable X is

E(X) =
∑

x

x · pX(x)

E(X) is often called the mean value of X and denoted µ (or µX if
there are other random variables).
It turns out E(X) = np for the binomial distribution.

On the previous slide, although E(X) = np = 10(3/4) = 7.5, this is
not a possible value for X.
Expected value does not mean we anticipate observing that value.
It means the long term average of many independent
measurements of X will be approximately E(X).
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Mean of the Binomial Distribution

Proof that µ = np for binomial distribution.

E(X)=
∑

k k · pX(k)
=
∑n

k=0 k ·
(n

k

)
pkqn−k

Calculus Trick: (p + q)n =
∑n

k=0
(n

k

)
pkqn−k

Differentiate: ∂
∂p(p + q)n =

∑n
k=0 k

(n
k

)
pk−1qn−k

Times p: p ∂
∂p(p + q)n =

∑n
k=0 k

(n
k

)
pkqn−k = E(X)

Evaluate left side: p ∂
∂p(p + q)n = p · n(p + q)n−1

= p · n · 1n−1 = np since p + q = 1.

So E(X) = np. �
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Expected values of functions
Let X = roll of a biased 6-sided die and Z = (X − 3)2.

x pX(x) z = (x − 3)2 pZ(z)
1 q1 4
2 q2 1
3 q3 0 pZ(0) = q3
4 q4 1 pZ(1) = q2 + q4
5 q5 4 pZ(4) = q1 + q5
6 q6 9 pZ(9) = q6

pdf of X: Each qi > 0 and q1 + · · ·+ q6 = 1.
pdf of Z: Each probability is also > 0, and the total sum is also 1.

E(Z), in terms of values of Z and the pdf of Z, is
E(Z) =

∑
z

z · pZ(z) = 0(q3) + 1(q2 + q4) + 4(q1 + q5) + 9(q6)

Regroup it in terms of X:
= 4q1 + 1q2 + 0q3 + 1q4 + 4q5 + 9q6 =

6∑
x=1

(x − 3)2qx
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Expected values of functions

Define
E(g(X)) =

∑
x

g(x) · pX(x)

In general, if Z = g(X) then E(Z) = E(g(X)).
The preceding slide demonstrates this for Z = (X − 3)2.

For functions of two variables, define

E(g(X, Y)) =
∑

x

∑
y

g(x, y)pX,Y(x, y)

and for more variables, do more iterated sums.
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Expected values — properties

E(aX + b) = aE(X) + b where a, b are constants:

E(aX + b) =
∑

x

pX(x)(ax + b) = a
∑

x

xpX(x) + b
∑

x

pX(x)

= aE(X) + b · 1 = aE(X) + b
E(a g(X)) = aE(g(X))
E(a) = a
E(g(X, Y) + h(X, Y)) = E(g(X, Y)) + E(h(X, Y))

If X and Y are independent then E(XY) = E(X)E(Y):

E(XY) =
∑

x

∑
y

pX,Y(x, y) · xy

=
∑

x

∑
y

pX(x)pY(y) · xy if X, Y independent!

=

(∑
x

pX(x)x

)(∑
y

pY(y)y

)
= E(X)E(Y)
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Expected value of a product — dependent variables

Example (Dependent)
Let U be the roll of a fair 6-sided die.
Let V be the value of the exact same roll of the die (U = V).
E(U) = E(V) = 1+2+3+4+5+6

6 = 21
6 = 7

2 and E(U)E(V) = 49
4 .

E(UV) = 1·1+2·2+3·3+4·4+5·5+6·6
6 = 91

6

Example (Independent)
Now let U, V be the values of two independent rolls of a fair
6-sided die.

E(UV) =

6∑
x=1

6∑
y=1

x · y
36

=
441
36

=
49
4

and E(U)E(V) = (7/2)(7/2) = 49/4
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Variance

These distributions both have mean=0, but the right one is more
spread out.

!20 0 200

0.05

0.1

x

pd
f

!20 0 200

0.05

0.1

x

pd
f

Variance measures the square of the spread from the mean:

σ2 = Var(X) = E((X − µ)2)

Standard deviation measures how wide the curve is:

σ = SD(X) =
√

Var(X)
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Variance — properties

−60−40−20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

x

de
ns

ity

 

 

pdf
µ
µ±σ

−60−40−20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

y=2x+20

de
ns

ity

 

 

pdf
µ
µ±σ

Var(aX + b) = a2 Var(X) SD(aX + b) = |a|SD(X)

Adding b shifts the curve without changing the width,
so b disappears on the right side of the variance formula.

Multiplying by a dilates the width a factor of a,
so variance goes up a factor a2.

For Y = aX + b, we have σY = |a|σX and µY = aµX + b.

Example: Convert measurements in ◦C to ◦F:
F = (9/5)C + 32 µF = (9/5)µC + 32 σF = (9/5)σC
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Variance — properties

Useful alternative formula for variance
σ2 = Var(X) = E(X2) − µ2 = E(X2) − (E(X))2

Proof.
Var(X) = E((X − µ)2) = E(X2 − 2µX + µ2)

= E(X2) − 2µE(X) + µ2

= E(X2) − 2µ · µ+ µ2 = E(X2) − µ2 �

Proof of Var(aX + b) = a2 Var(X).

E((aX + b)2) = E(a2X2 + 2ab X + b2) = a2E(X2) + 2ab E(X) + b2

(E(aX + b))2 = (aE(X) + b)2 = a2(E(X))2 + 2ab E(X) + b2

Var(aX + b) = difference = a2
(

E(X2) − (E(X))2
)

= a2 Var(X) �
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Variance of a sum — dependent variables

We will show that if X, Y are independent, then

Var(X + Y) = Var(X) + Var(Y)

Example (Dependent)
First consider this dependent example:
Let X be any non-constant random variable and Y = −X.

Var(X + Y) = Var(0) = 0

Var(X) + Var(Y) = Var(X) + Var(−X)

= Var(X) + (−1)2 Var(X) = 2 Var(X)

but usually Var(X) , 0 (the only exception would be if X is a constant).
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Variance of a sum — independent variables
Theorem
If X, Y are independent, then Var(X + Y) = Var(X) + Var(Y).

Proof.
E((X + Y)2) = E(X2 + 2XY + Y2) = E(X2) + 2E(XY) + E(Y2)

(E(X + Y))2 = (E(X) + E(Y))2 = (E(X))2 + 2E(X)E(Y) + (E(Y))2

Var(X + Y) = E((X + Y)2) − (E(X + Y))2

=
(
E(X2) − (E(X))2)

+ 2 (E(XY) − E(X)E(Y))
+
(
E(Y2) − (E(Y))2)

= Var(X) + 2(E(XY) − E(X)E(Y)) + Var(Y)
If X, Y are independent, E(XY) = E(X)E(Y), so the middle term is 0. �

Generalization
If X, Y, Z, . . . are pairwise independent:

Var(X + Y + Z + · · · ) = Var(X) + Var(Y) + Var(Z) + · · ·
Var(aX + bY + cZ + · · · ) = a2 Var(X) + b2 Var(Y) + c2 Var(Z) + · · ·
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Variance of a sum — dependent variables

Covariance
For dependent variables, the cross-terms remain:

Var(X + Y) = Var(X) + 2(E(XY) − E(X)E(Y)) + Var(Y)

Define Cov(X, Y) = E(XY) − E(X)E(Y). Then

Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y)

Two formulas for covariance:
Cov(X, Y) = E((X − µX)(Y − µY)) = E(XY) − E(X)E(Y)

E((X − µX)(Y − µY)) = E(XY) − µX E(Y) − E(X)µY + µXµY

= E(XY) − E(X)E(Y) − E(X)E(Y) + E(X)E(Y)

= E(XY) − E(X)E(Y)
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Covariance properties

Var(X) = E((X − µX)
2) = E(X2) − (E(X))2

Cov(X, Y) = E((X − µX)(Y − µY)) = E(XY) − E(X)E(Y)

Additional properties
Cov(X, X) = Var(X)

Cov(X, Y) = Cov(Y, X)

If X, Y are independent then Cov(X, Y) = 0.
Beware, this is not reversible: Cov(X, Y) could be 0 for
dependent variables.

Cov(aX + b, cY + d) = ac Cov(X, Y) (a, b, c, d are constants)
Cov(X + Z, Y) = Cov(X, Y) + Cov(Z, Y) and
Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

Var(X1 +X2 + · · ·+Xn) = Var(X1)+ · · ·+Var(Xn)+ 2
∑

16i<j6n
Cov(Xi, Xj)
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Mean and variance of the Binomial Distribution
A Bernoulli trial is a single coin flip,

P(heads) = p, P(tails) = 1 − p = q.
Do n coin flips (n Bernoulli trials). Set

Xi =

{
1 if flip i is heads;
0 if flip i is tails.

The total number of heads in all flips is X = X1 + X2 + · · ·+ Xn.
Flips HTTHT: X = 1 + 0 + 0 + 1 + 0 = 2.
X1, . . . , Xn are independent and have the same pdfs, so they are
i.i.d. (independent identically distributed) random variables.

E(X1) = 0(1 − p) + 1p = p

E(X1
2) = 02(1 − p) + 12p = p

Var(X1) = E(X1
2) − (E(X1))

2 = p − p2 = p(1 − p)

E(Xi) = p and Var(Xi) = p(1 − p) for all i = 1, . . . , n
because they are identically distributed.
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Mean and variance of the Binomial Distribution

The total number of heads in all flips is X = X1 + X2 + · · ·+ Xn.
E(Xi) = p and Var(Xi) = p(1 − p) for all i = 1, . . . , n.

Mean:
µX = E(X) = E(X1 + · · ·+ Xn)

= E(X1) + · · ·+ E(Xn)

= p + · · ·+ p = np identically distributed

Variance:
σX

2 = Var(X) = Var(X1 + · · ·+ Xn)

= Var(X1) + · · ·+ Var(Xn) by independence
= p(1 − p) + · · ·+ p(1 − p) identically distributed
= np(1 − p) = npq

Standard deviation:
σX =

√
np(1 − p) =

√
npq
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Mean and variance of the Binomial Distribution

For the binomial distribution,

Mean: µ = np

Variance:
σ2 = np(1 − p)

Standard deviation:
σ =

√
np(1 − p)

At n = 100 and p = 3/4:

µ = 100(3/4) = 75
σ =

√
100(3/4)(1/4) ≈ 4.33
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0

0.02

0.04
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0.08

0.1

0.12

Binomial distribution

x
pd

f
 

 

µ
µ±σ
Binomial: n=100, p=0.75

Approximately 68% of the probability is for X between µ± σ.
Approximately 95% of the probability is for X between µ± 2σ.
More on that later when we do the normal distribution.
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Geometric Distribution

Consider a biased coin with probability p of heads.
Flip it repeatedly (potentially∞ times).
Let X be the number of flips until the first head.
Example: TTTHTTHHT has X = 4.
The pdf is

pX(k) =

{
(1 − p)k−1p for k = 1, 2, 3, . . . ;
0 otherwise

Mean: µ = 1
p Variance: σ2 = 1−p

p2 Std dev: σ =
√

1−p
p
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Negative Binomial Distribution

Consider a biased coin with probability p of heads.

Flip it repeatedly (potentially∞ times).

Let X be the number of flips until the rth head
(r = 1, 2, 3, . . . is a fixed parameter).

For r = 3, TTTHTHHTTH has X = 7.

X = k when
first k − 1 flips: r − 1 heads and k − r tails in any order;
kth flip: heads

so the pdf is

pX(k) =
(

k − 1
r − 1

)
pr−1(1 − p)k−r · p =

(
k − 1
r − 1

)
pr(1 − p)k−r

provided k = r, r + 1, r + 2, . . . ;
pX(k) = 0 otherwise.
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Negative Binomial Distribution – mean and variance

Consider the sequence of flips TTTHTHHTTH.

Break it up at each heads:
TTTH︸   ︷︷   ︸

X1=4

/ TH︸︷︷︸
X2=2

/ H︸︷︷︸
X3=1

/ TTH︸ ︷︷ ︸
X4=3

X1 is the number of flips until the first heads;
X2 is the number of additional flips until the 2nd heads;
X3 is the number of additional flips until the 3rd heads; . . .

The Xi’s are i.i.d. geometric random variables with parameter p,
and X = X1 + · · ·+ Xr.

Mean: E(X) = E(X1) + · · ·+ E(Xr) =
1
p + · · ·+ 1

p = r
p

Variance: σ2 = 1−p
p2 + · · ·+ 1−p

p2 =
r(1−p)

p2

Standard deviation: σ =

√
r(1−p)

p
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Geometric Distribution – example
About 10% of the population is left-handed.
Look at the handedness of babies in birth order in a hospital.
Number of births until first left-handed baby:
Geometric distribution with p = .1:

pX(x) = .9x−1 · .1 for x = 1, 2, 3, . . .

0 10 20 300
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0.1

Geometric distribution

x

pd
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µ
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Geometric: p=0.10

Mean: 1
p = 1

.1 = 10.

Standard deviation: σ =
√

1−p
p =

√
.9

.1 ≈ 9.487, which is HUGE!
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Negative Binomial Distribution – example
Number of births until 8th left-handed baby:
Negative binomial, r = 8, p = .1.

pX(x) =
(x−1

8−1

)
(.1)8(.9)x−8 for x = 8, 9, 10, . . .
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µ
µ±!
r=8, p=0.10

Mean: r/p = 8/.1 = 80.

Standard deviation:
√

r(1−p)
p =

√
8(.9)
.1 ≈ 26.833.

Probability the 50th baby is the 8th left-handed one:
pX(50) =

(50−1
8−1

)
(.1)8(.9)50−8 =

(49
7

)
(.1)8(.9)42 ≈ 0.0103

Prof. Tesler Permutations, binomial, expected values Math 283 / Fall 2019 49 / 51



Where do the distribution names come from?
The PDFs correspond to the terms in certain Taylor series

Geometric series
For real a, x with |x| < 1,

a
1 − x

=

∞∑
i=0

a xi

= a + ax + ax2 + · · ·
Total probability for the
geometric distribution:∞∑

k=1

(1 − p)k−1p

=
p

1 − (1 − p)

=
p
p
= 1

Negative binomial series
For integer r > 0 and real x with
|x| < 1,

1
(1 − x)r =

∞∑
k=r

(
k − 1
r − 1

)
xk−r

Total probability for the negative
binomial distribution:∞∑

k=r

(
k − 1
r − 1

)
pr(1 − p)k−r

= pr
∞∑

k=r

(
k − 1
r − 1

)
(1 − p)k−r

= pr · 1
(1 − (1 − p))r = 1
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Geometric and Negative Binomial – versions
Unfortunately, there are 4 versions of the definitions of these distributions.
Our book uses versions 1 and 2 below, and you may see the others elsewhere.
Authors should be careful to state which definition they’re using.

Version 1: the definitions we already did (call the variable X).
Version 2 (geometric): Let Y be the number of tails before the first
heads, so TTTHTTHHT has Y = 3.

pdf: pY(k) =

{
(1 − p)kp for k = 0, 1, 2, . . . ;
0 otherwise

Since Y = X − 1, we have E(Y) = 1
p − 1, Var(Y) = 1−p

p2 .
Version 2 (negative binomial): Let Y be the number of tails before
the rth heads, so Y = X − r.

pY(k) =

{(k+r−1
r−1

)
pr(1 − p)k for k = 0, 1, 2, . . . ;

0 otherwise
Versions 3 and 4: switch the roles of heads and tails in the first
two versions (so p and 1 − p are switched).
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