Linear Algebra review

Powers of a diagonalizable matrix
Spectral decomposition
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Math 283
Fall 2018

Also see the separate version of this with Matlab and R commands.
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@ A matrix is a square or rectangular table of numbers.

@ An m x n matrix has m rows and n columns. This is read “m by n”.

1 2 3
A_[456]

@ The entry in row i, column j, is denoted A; ; or A;;.

@ This matrixis 2 x 3:

A =1 Arp =12 A3 =3
Ay =4 Axp =35 Ax3 =06
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Matrix multiplication

A B = C
Lo 3 5 -2 3 2
L5 e o 1 1 -1 = | =
\VJ__1643_ \VJ
2%3 ~ ~~ ~ 2x4

3 x4

@ LetAbepxgandBbeqg xr.

@ The product AB = C is a certain p x r matrix of dot products:

q
Cij= ) Aix By, = dot product (i row of A) - (/" column of B)
k=1

@ The number of columns in A must equal the number of rows in B
(namely ¢g) in order to be able to compute the dot products.

Prof. Tesler Diagonalizing a matrix Math 283 / Fall 2018 3/35



Matrix multiplication
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Matrix multiplication

3
[}122011_1:[?1-8::]
—1 6 4 3

Cir=1(=2)+2(1)+3(6) =—2+2+18 =18

Prof. Tesler Diagonalizing a matrix Math 283 / Fall 2018 5/35



Matrix multiplication

4 5 6

Ciz=103)+2(1)+3(4)=3+2+12=17
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Matrix multiplication

[2 18 17 9]
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Matrix multiplication

) 2 18 17 9
Al
4

Co1=4(5)+5(0)+6(—1)=204+0—6= 14
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Matrix multiplication

12 3

4 5 6 14 33

_[2 18 17 9]

Canr =4(—2) +5(1) + 6(6) = —8 + 5+ 36 = 33
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Matrix multiplication

14 33 41

_[2 18 17 9]

Coz =4(3)+5(1)+6(4) =12+5+24 =41
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Matrix multiplication

14 33 41 21

_[2 18 17 9]

Cos=4(2)+5(—1)+6(3)=8—5+18 =21
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Transpose of a matrix

@ Given matrix A of dimensions p x g, the transpose A’ is g x p,
obtained by interchanging rows and columns: (A’);; = Aj;.

[1 23]’_;
45 6] 15 g

@ Transpose of a product reverses the order and transposes the
factors: (AB)' =B’ A’

i
5

[123] 8 _12?_21_[2 18 17 9]
5601 6 4 5| L4334
5 0 1] 4 [2 14
-2 1 6 ;2_18 33
31 4l T ] |17 4
2 -1 3] 4 ]9 21
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Matrix multiplication is not commutative: usually, AB # BA

@ For both AB and BA to be defined, need compatible dimensions:

giving

square and of the same size, n x n.
@ Even then, they are usually not equal:

Prof. Tesler

A:m X n,

AB.: m X m,
@ The only chance for them to be equal would be if A and B are both

1

L)‘)I

3
0

.
O_

OI

B.nXxm

BA: n X n

wl

N
O_

[\.)I

OI
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Multiplying several matricies

@ Multiplication /s associative: (AB)C = A(BC)

@ Suppose Aisp; X p»
Bis py X p3
C is p3 X p4
D is py X ps

Then ABCD is p; x ps. By associativity, it may be computed in
many ways, such as A(B(CD)), (AB)(CD), ... or directly by:

P2 P3 P4

(ABCD)ij= ) Y ) Aik Bk Cuy ki Diy )
kr=1k;=1ks=1

This generalizes to any number of matrices.
@ Powers A = AA, A3 = AAA, ... are defined for square matrices.
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ldentity matrix

@ The n x n identity matrix I 1s

1 0 0 .. .
1 ifi = (main diagonal);
IZO 1 0 Ii,j{ l ]( g )
00 1 0 ifi+j(elsewhere).
@ For any n x n matrix A,
IA = Al = A.

This plays the same role as 1 does in multiplication of numbers:

l - x=x-1=nx.
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Inverse matrix

@ The inverse of an n x n matrix A is an n x n matrix A—! such that

AA™!' =Tand A~'A = I. It may or may not exist. This plays the
role of reciprocals of ordinary numbers, x~! = 1/x.

@ For 2 x 2 matrices

. a b -1 1 d —b
A_[c d] A _ad—bc[—c a]

unless det(A) = ad — bc = 0, in which case A—! is undefined.

@ For n x n matrices, use the row reduction algorithm (a.k.a.
Gaussian elimination) in Linear Algebra.

@ If A, B are invertible and the same size: (AB)~! =B~ 14!
The order is reversed and the factors are inverted.
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Span, basis, and linear (in)dependence

The span of vectors vy, ..., v Is the set of all linear combinations

X V] + -+ Vg xX1,...,0 € R
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Span, basis, and linear (in)dependence

Example 1

@ |n 3D,
( _1_ _O_ ) ( _X_ )
span¢ |0], [0 p =< |0]| : x,z€ R, = xzplane
O] L], \ L<_ y

@ Here, the span of these two vectors is a 2-dimensional space.
Every vector in it is generated by a unique linear combination.
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Span, basis, and linear (in)dependence

Example 2

@ [n 3D,

span <

@ Note that

@ Here, the span of these three vectors is a 3-dimensional space.
Every vector in R’ is generated by a unique linear combination.

o O

R )
, | O > = <
__1/2_/ \
- _

(x—y) |0] +y
0] 0

—

0

—1/2]

x,y,z€ Ry =R°.

v
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Span, basis, and linear (in)dependence

Example 3

@ |In 3D,

(1] [1] [o]° ([ x] )
span< (O, |0, ]|0] » =< |0] : x,z€ R} =xzplane
\ _O_ _1_ _1_ / \ _Z_ /

@ This is a plane (2D), even though it's a span of three vectors.
@ Note that v, = V| + V3, 0r vy —vh + V3 = 6
@ There are multiple ways to generate each vector in the span:

for all x, z, t,

X | 1] 0 1] 1] 0
O =x|0]| +z|0| +¢t(Vi—Vo+W3) = (x+1)|0| —¢[0]| +(z2+1)|0
| Z] 0 1 e 0 1 1
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Span, basis, and linear (in)dependence

@ Given vectors vy, ..., Vi, iIf there is a linear combination
X V) 4+ -+ oV =0

with at least one «; # 0, the vectors are linearly dependent (Ex. 3).
Otherwise they are linearly independent (Ex. 1-2).

@ Linearly independent vectors form a basis of the space S they span.

e Any vector in S is a unique linear combination of basis vectors
(vs. it’s not unique if Vi, ..., Vv, are linearly dependent).

1 0 0)
@ One basis of R” is a unit vector on each axis: M , H , M
0f |0 |

1 1 0
but there are other possibilities, e.g., Example 2: |0, |1|,| O
0| |0] |—1/2
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Eigenvalues and eigenvectors

Let A be a square matrix (k x k) and ¥ # 0 be a column vector (k x 1).
If Av = Av for a scalar A, then v is an eigenvector of A with eigenvalue A.

o /b= Lom o | = =2l
6 313 | ©6)(1)+3)3) | |15 |3

H IS an eigenvector with eigenvalue 5.

But this is just a verification. How do we find eigenvalues and eigenvectors?

y
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Finding eigenvalues and eigenvectors

@ We will work with the example

8§ —1
=l
@ Form the identity matrix of the same dimensions:
1 0
=lo 1]

@ The formula for the determinant depends on the dimensions of the
maitrix. For a 2 x 2 matrix,
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Finding eigenvalues and eigenvectors

@ Compute the determinant of P — Al

8—A —1
det(P—AI):det[ 6 3 ]

=(8—=A)(3—A) —(—1)(6)
— 24— 1IN+ A2+ 6
— A —11A +30

This is the characteristic polynomial of P. It has degree k in A.

@ The characteristic equation is det(P — AI) = 0. Solve it for A.
For k = 2, use the quadratic formula:

114+ /(— (1)(30)
A= 2

@ The eigenvalues are A =5 and A = 6.

=35, 6
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Finding the (right) eigenvector for A =5

a

b
@ The equation P¥ = AV is equivalent to (P — AI)¥ = 0.

0 L |3 =1} l|al |3a—b
R e R e
s0 3a — b =0 and 6a — 2b = 0 (which are equivalent).
@ Solving gives b = 3a. Thus,

-

@ Any nonzero scalar multiple of H IS an eigenvector of P with

@ Letv= [ ] We will solve for a, b.

eigenvalue 5.
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Finding the (right) eigenvector for A = 6

a

b
@ The equation P¥ = AV is equivalent to (P — AI)¥ = 0.

0 L |2 =1} |al |2a—0b
o] =t -o07=[ 3 )= e
S0 2a — b = 0 and 6a — 3b = 0 (which are equivalent).
@ Solving gives b = 2a. Thus,

-l

@ Any nonzero scalar multiple of H IS an eigenvector of P with

@ Letv= [ ] We will solve for a, b.

eigenvalue 6.
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Verifty the eigenvectors

L,

1y
_24_

L,
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Normalization: Which scalar multiple should we use?

In some applications, any nonzero multiple is fine.
In others, a particular scaling is required.

Markov chains / Stochastic matrices

Entries are probabilities of different cases. Scale the vector so that the
entries sum up to 1.

o | o L 14
Forv_a[3],thesumlsa-(1+3)—4“_1’Soa_4' v_[3/4]

Principal component analysis

Scale it to be a unit vector, so that the sum of the squares of its entries
equals 1:

+1 +1
1 =a%(1%+3%2) = 10a? sO a = =
( ) V12432 /10

V:ill/m]

3/v10

(two possibilities)
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Finding the left eigenvector for A = 5

@ Letv=|a b|. We will solve for a, b.
@ The equation ¥P = AV is equivalent to #(P — AI) = 0.

3 —1

0 0 =¥(P—50)=[a b] [6 -

] — Ba+6b —a—2b)
S0 3a + 6b = 0 and —a — 2b = 0 (which are equivalent).
@ Solving gives b = —a/2. Thus,
Vv=la bl=la —a/2]=all —1/2]

@ Any nonzero scalar multiple of [1 —1/2| is a left eigenvector of P
with eigenvalue 5.
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Finding the left eigenvector for A = 6

@ Letv=|a b|. We will solve for a, b.
@ The equation ¥P = AV is equivalent to #(P — AI) = 0.

2 —1

0 0 =¥(P—6l)=[a b] [6 >

] = [2a+6b —a—3b}
S0 2a + 6b = 0 and —a — 3b = 0 (which are equivalent).
@ Solving gives b = —a/3. Thus,
v=la b|=la —a/3|=all —1/3]

@ Any nonzero scalar multiple of [1 —1/3] is a left eigenvector of P
with eigenvalue 6.
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Verify the left eigenvectors

=[-10 5| =5[-2 1]

1.5 —.5] [8 _1] = [1.5(8) —.5(6) 1.5(—1) —.5(3)]

=19 -3]=6|1.5 —.5]
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Diagonalizing a matrix

@ This procedure assumes there are k linearly independent
eigenvectors, where P is k x k.

@ If the characteristic polynomial has & distinct roots, then there are
k such eigenvectors.

@ But if roots are repeated, there may or may not be a full set of
eigenvectors. We'll explore this complication later.
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Diagonalizing a matrix

@ Put the right eigenvectors 7|, r,, . .. into the columns of a matrix V.
Form diagonal matrix D with eigenvalues Ay, A, ... in the same

order: 12 A 0] 500
SN 1
V=1717n] =, 4] D:[O AJ:[o 6]
(_5)1 - 12 1
6 | 132 —12

@ Compute V! = [

lts rows are the left eigenvectors {;, {,, ... of P, in the same order
as the eigenvalues in D, scaled so that ¢; - 7, = 1.

@ This gives the diagonalization P = VDV~
P = VvV D v—1

s o) = b b b e

v
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Matrix powers using the spectral decomposition

An expansion of P* is P* = (VDV— 1) (vDV—1)...(vDV—1) = vD*v—1:

5" 0 5" 0 0 0
n ny;—1 —1 —1 —1
P = VD'V —V[O 6”’]V —V[O O]V +v[0 6”]V

S0 0] U 2 [0 0] =2 1] _[26"(15) 2(6")(—S5)
0 6" — 13 4] |0 6] [1.5 —5] " |4(6")(1.5) 4(6")(—.5)

2 Lo (3 —1
:6” [4] [1.5 —.5}:7\2711”222:6 [ ]
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Matrix powers using the spectral decomposition

@ Continue computing P":

P”:VD”\/I:V[SO 6(31] Vlzvlso 8] V1+V[O O]V1

o[22
@ General formula (with k = 2 and two distinct eigenvalues):
Pr=VD'V = A"+ MRl
@ General formula: If P is k x k and is diagonalizable, this becomes:
Pr=VvD'V ! =AN"AL+NFHL A+ + N TR

@ What if the matrix is not diagonalizable?
We will see a generalization called the Jordan Canonical Form.
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