
Math 283, Spring 2006, Prof. Tesler – May 22, 2006
Markov chains and the number of occurrences of a word in a sequence

(Chapter 4.5–4.9; 11.1,2,4,6)

1. Finite state machine for counting occurrences of a word or motif

We revisit the problem of counting the number of occurrences of a word in a sequence. This is a
finite state machine for analyzing occurrences of the word w = GAGA allowing for overlaps:

M1 =

0

pA+pC+pT

G
pG

pC+pT

pG

GA
pA

pA+pC+pT

GAG
pG

pC+pT
pG

GAGA
pA

pA+pC+pT

pG

This one does not allow overlaps:

M2 =

0

pA+pC+pT

G
pG

pC+pT

pG

GA
pA

pA+pC+pT

GAG
pG

pC+pT

pG

GAGA
pA

pA+pC+pT

pG

This one detects overlapping occurrences of the motif {GAGA, GTGA}:

M3 =

0

A,C,T

G
G
C

G
GAA

GT

T

A,C,T

GAG
G

C

G

GAGA
A

T

GTG

A,C,T

G

GTGA

A,C,T

G

C

G
T

A

A,C,T

G

For non-overlapping occurrences, replace the outgoing edges from GAGA and GTGA by copies of 0’s
outgoing edges.

More generally, finite state machines can be constructed for any regular expression.
Using these finite state machines: Start in the state 0. Scan a sequence τ = τ1τ2 . . . τN one

character at a time from left to right. When examining τj, move from the current state to the next
state according to which edge τj is on.

(In a general Markov chain, there is not necessarily one starting state, but instead, a probability
of choosing each state as the starting state.)

M3 is shown in the regular notation for finite automata, with τj appearing on one of the edges;
M1,M2 are shown in the notation for a Markov chain, with a probability appearing on the edge
instead (pA, . . . , pT are the probabilities of each letter). In machines M1 or M2, the number of
times we are in the state GAGA is the desired count of overlapping or non-overlapping occurrences.
In M3, use the number of times in states GAGA or GTGA.

For example, suppose τ = CAGAGGTCGAGAGT...; this is what happens in machine M1:
1

2

Time t State at t τt+1

1 0 C
2 0 A
3 0 G
4 G A
5 GA G

Time t State at t τt+1

6 GAG G
7 G T
8 0 C
9 0 G
10 G A

Time t State at t τt+1

11 GA G
12 GAG A
13 GAGA G
14 GAG T
15 0 · · ·

In machine M2, the only difference is that t = 14 is state G.

Names of states in overlapping case (M1): If we are in state w1 . . . wr after examining τj, it
means that the last r letters of τ ending at τj agreed with the first r letters of w, and that there is
not a longer prefix of w that ends at τj.

Names of states in non-overlapping case (M2): It’s almost the same as M1, except the outgoing
edges of GAGA are replaced by copies of the outgoing edges of 0 (same probabilities and endpoints
but starting at GAGA instead of starting at 0), so that the second GA cannot count towards an
overlapping occurrence of GAGA.

Names of states in motif, overlapping case (M3): State w1 . . . wr means the last r letters of τ
ending at τj are w1 . . . wr; some word in the motif starts with w1 . . . wr; and there isn’t a longer
word ending at τj that is a prefix of any word in the motif.

This is how to design a machine like M1 for any word (to analyze overlapping occurrences of the
word w = w1w2 . . . wk):

(a) Make a graph with k + 1 nodes (called “states”): ∅, w1, w1w2, w1w2w3, . . . , w1w2 · · ·wk.

(b) Each node has four outgoing edges (which may later be merged into fewer). For each node
w1 . . . wr and each letter x = A, C, G, T, determine the longest suffix s (possibly ∅) of w1 . . . wrx
that is one of the states. Draw an edge from w1 . . . wr to s, with probability px on that edge.

Note that if r < k and x = wr+1, this will be an edge to w1 . . . wr+1.

(c) If there are several edges in the same direction between two nodes, combine them into one
edge by adding the probabilities together.

For non-overlapping occurrences of w (as in M2), replace the outgoing edges from w by copies of
0’s outgoing edges.

For motifs (overlapping or non-overlapping), the states are all the prefixes of all the words. If a
prefix is common to more than one word, it is only used as one state.

2. Markov chains

A Markov chain is similar to a finite state machine, but incorporates probabilities.
Let S be a set of “states.” We will take S to be a discrete finite set, such as S = {1, 2, . . . , s}.
Let t = 1, 2, . . . denote the “time.”
Let X1, X2, . . . denote a sequence of random variables, which take on values from S.
The Xt’s form a Markov chain if they obey these rules:

(1) The probability of being in a certain state at time t + 1 only depends on the state at time
t, not on any earlier states:
P (Xt+1 = xt+1|X0 = x0, . . . , Xt = xt) = P (Xt+1 = xt+1|Xt = xt):

(2) The probability of transitioning from state i at time t to state j at time t + 1 only depends
on i and j, and does not depend on the time: there are values pij such that P (Xt+1 = j|Xt =
i) = pij at all times t. These are put into an s × s transition matrix.

The transition matrix, P1, of the Markov chain M1 is

3


From state 1: 0

To state 1
pA + pC + pT

2
pG

3
0

4
0

5
0

From state 2: G pC + pT pG pA 0 0
From state 3: GA pA + pC + pT 0 0 pG 0
From state 4: GAG pC + pT pG 0 0 pA

From state 5: GAGA pA + pC + pT 0 0 pG 0

 =


P11 P12 P13 P14 P15

P21 P22 P23 P24 P25

P31 P32 P33 P34 P35

P41 P42 P43 P44 P45

P51 P52 P53 P54 P55


Notice that the entries in each row sum up to pA + pC + pG + pT = 1. A matrix with all entries
≥ 0 and all row sums equal to 1 is called a stochastic matrix. The transition matrix of a Markov
chain is always a stochastic matrix. (For state machines in other contexts than Markov Chains, the
transition matrix would have weights = 0 for no edge or 6= 0 for an edge, but the nonzero weights
may be defined differently, and the matrices are usually not stochastic.)

For M2, since edges leaving GAGA were changed to copy 0’s outgoing edges, the bottom row
changes to a copy of the top row.

If all nucleotides have equal probabilities pA = pC = pG = pT = 1
4
, matrices P1 and P2 become

P1 =


3/4 1/4 0 0 0
1/2 1/4 1/4 0 0
3/4 0 0 1/4 0
1/2 1/4 0 0 1/4
3/4 0 0 1/4 0

 P2 =


3/4 1/4 0 0 0
1/2 1/4 1/4 0 0
3/4 0 0 1/4 0
1/2 1/4 0 0 1/4
3/4 1/4 0 0 0


We will examine several questions that apply to Markov chains, using P1 or P2 as examples.

(1) What is the probability of being in a particular state after n steps?

(2) What is the probability of being in a particular state as n → ∞?

(3) What is the “reverse” Markov chain?

(4) If you are in state i, what is the expected number of time steps until the next time you are
in state j? What is the variance of this? What is the complete probability distribution?

(5) Starting in state i, what is the expected number of visits to state j before reaching state k?

2.1. Technical conditions. This Markov chain has a number of complications:

M4 =

1

2 4 8

3 5

7

6

9

10

A Markov chain is irreducible if every state can be reached from every other state after enough
steps. But M4 is reducible since there are states that cannot be reached from each other: after
sufficient time, you are either stuck in state 3, the component {4, 5, 6, 7}, or the component {8, 9, 10}.

State i has period d if the Markov chain can only go from state i to itself in multiples of d steps,
where d is the maximum number that satisfies that. If d > 1 then state i is periodic. A Markov
chain is periodic if at least one state is periodic and is aperiodic if no states are periodic. All states
in a component have the same period. In M4, component {4, 5, 6, 7} has period 2 and component
{8, 9, 10} has period 3, so M4 is periodic.

An absorbing state has all its outgoing edges going to itself. An irreducible Markov chain with
two or more states cannot have any absorbing states. In M4, state 3 is an absorbing state.

There are generalizations to infinite numbers of discrete or continuous states and to continuous
time, which we do not consider. We will work with Markov chains that are finite, discrete, irre-
ducible, and aperiodic, unless otherwise stated. For a finite discrete Markov chain on two or
more states, being irreducible and aperiodic with no absorbing states is equivalent to
P or a power of P having all entries be greater than 0.

4

A Markov chain is kth order if the probability of Xt = i depends on the values of Xt−1, . . . , Xt−k.
However, it can be converted to a first order Markov chain by making new states that essentially
record the last k states into one new state. We will only look at first order Markov chains.

3. Transition probabilities after n steps

The two-step transition probability for going from state i at time t to state j at time t + 2 is
computed by considering all the states it could be at during time t + 1:

P (Xt+2 = j|Xt = i) =
∑

r

P (Xt+1 = r|Xt = i)P (Xt+2 = j|Xt+1 = r,Xt = i)

=
∑

r

P (Xt+1 = r|Xt = i)P (Xt+2 = j|Xt+1 = r) =
∑

r

PirPrj = (P 2)ij

(where P 2 is the square of the matrix P). In the same way, the transition matrix from time t to
time t + n is P n (for n ≥ 0):

P (Xt+n = j|Xt = i)

=
∑

r1,...,rn−1

P (Xt+1 = r1|Xt = i)P (Xt+2 = r2|Xt+1 = r1) · · ·P (Xt+n = j|Xt+n−1 = rn−1)

=
∑

r1,...,rn−1

Pi r1Pr1 r2 · · ·Prn−1 j = (P n)ij

In this example, with P = P1:

P 0 = I =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 P 1 =


3
4

1
4

0 0 0
1
2

1
4

1
4

0 0
3
4

0 0 1
4

0
1
2

1
4

0 0 1
4

3
4

0 0 1
4

0

 P 2 =


11
16

1
4

1
16

0 0
11
16

3
16

1
16

1
16

0
11
16

1
4

0 0 1
16

11
16

3
16

1
16

1
16

0
11
16

1
4

0 0 1
16



P 3 =


11
16

15
64

1
16

1
64

0
11
16

15
64

3
64

1
64

1
64

11
16

15
64

1
16

1
64

0
11
16

15
64

3
64

1
64

1
64

11
16

15
64

1
16

1
64

0

 P 4 =


11
16

15
64

15
256

1
64

1
256

11
16

15
64

15
256

1
64

1
256

11
16

15
64

15
256

1
64

1
256

11
16

15
64

15
256

1
64

1
256

11
16

15
64

15
256

1
64

1
256

 P n = P 4 for n ≥ 5

Usually P n just approaches a limit as n increases, rather than reaching it. We’ll see other
examples later (like P2).

In this example, no matter what the starting state, the probabilities of being in states 1, 2, 3, 4, 5 at
time t when t is large enough are 11

16
, 15

64
, 15

256
, 1

64
, 1

256
. (Usually these would be reached asymptotically

as n → ∞ rather than exactly.)
Suppose at time t, the probability of being in state i is αi(t) = P (Xt = i). (For example,

sometimes the starting state is not known, but instead, the probabilities of each state at time t = 0
are specified.) Consider the column vector

~α(t) =

α1(t)
...

αs(t)

 or make it a row vector by using the transpose
~α(t)′ = (α1(t), . . . , αs(t))

The probabilities at time t + n are

αj(t + n) = P (Xt+n = j|~α(t)) =
∑

i

P (Xt+n = j|Xt = i)P (Xt = i) =
∑

i

αi(t)(P
n)ij = (~α(t)′P n)j,

so ~α(t + n)′ = ~α(t)′P n (row vector times matrix), or equivalently, (P ′)n~α(t) = ~α(t + n) (matrix
times column vector).

5

4. Stationary Distribution (a.k.a. steady state distribution)

If P is irreducible and aperiodic, P n approaches a limit with this format as n → ∞:

lim
n→∞

P n =

ϕ1 ϕ2 · · · ϕs
ϕ1 ϕ2 · · · ϕs· · · · · · · · · · · ·
ϕ1 ϕ2 · · · ϕs


In other words, no matter what the starting state, the probability of being in state j after n steps
approaches ϕj. The row vector ~ϕ ′ = (ϕ1, . . . , ϕn) is called the stationary distribution of the Markov
chain. It is “stationary” because these probabilities stay the same from one time to the next: in
matrix notation, ~ϕ ′P = ~ϕ ′, or P ′~ϕ = ~ϕ. So ~ϕ ′ is a left eigenvector of P with eigenvalue 1. Since
it represents probabilities of being in each state, the components of ~ϕ add up to 1.

A general method to compute ~ϕ is to find a left eigenvector of P with eigenvalue 1 (or right
eigenvector of P ′), and then divide by the sum of the elements of the vector. It turns out that in
a Markov chain, all eigenvalues have absolute value ≤ 1. If P is irreducible and aperiodic, there is
just one eigenvalue equal to 1 and the others have absolute value ≤ 1.

In the M1 example: solve ~ϕ ′P = ~ϕ ′, or (ϕ1, . . . , ϕ5)P = (ϕ1, . . . , ϕ5):

ϕ1 = 3
4
ϕ1 + 1

2
ϕ2 + 3

4
ϕ3 + 1

2
ϕ4 + 3

4
ϕ5

ϕ2 = 1
4
ϕ1 + 1

4
ϕ2 + 0ϕ3 + 1

4
ϕ4 + 0ϕ5

ϕ3 = 0ϕ1 + 1
4
ϕ2 + 0ϕ3 + 0ϕ4 + 0ϕ5

ϕ4 = 0ϕ1 + 0ϕ2 + 1
4
ϕ3 + 0ϕ4 + 1

4
ϕ5

ϕ5 = 0ϕ1 + 0ϕ2 + 0ϕ3 + 1
4
ϕ4 + 0ϕ5

and put in the total probability equation ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 = 1. This is 6 equations in 5
unknowns, so it is overdetermined; knock out the ϕ5 = · · · equation and solve the rest of them to
get ~ϕ ′ = (11

16
, 15

64
, 15

256
, 1

64
, 1

256
) ≈ (0.6875, 0.2344, 0.0586, 0.0156, 0.0039).

(Actually, the first 5 equations are underdetermined; they add up to ϕ1+ · · ·+ϕ5 = ϕ1+ · · ·+ϕ5.)

5. Reverse Markov Chain

Given a Markov chain that accurately models the “forwards” progression of time, a “reverse”
version of it can be constructed to make predictions about the past. For example, this is done in
models of nucleotide evolution. The graph of the reverse Markov chain has the same nodes as the
forwards chain; the same edges but reverse directions; and new probabilities for these edges.

The transition matrix P of the forwards Markov chain was defined so that P (Xt+1 = j|Xt = i) =
pij at all times t. The reverse Markov chain has transition matrix Q, where

qij = P (Xt = j|Xt+1 = i) =
P (Xt+1 = i|Xt = j)P (Xt = j)

P (Xt+1 = i)
=

pjiϕj

ϕi

We assumed the forwards machine has run long enough to reach the stationary distribution, P (Xt =
i) = ϕi. For M1, the graph and transition matrix of the reverse Markov chain are

0 G GA GAG GAGA

Q1 =


3
4

15
88

45
704

1
88

3
704

11
15

1
4

0 1
60

0

0 1 0 0 0

0 0 15
16

0 1
16

0 0 0 1 0


For example, the edge 0 → GA in the reverse chain has q13 = p31ϕ3/ϕ1 = (3

4
)(15

256
)/(11

16
) = 45

704
. This

means that in the steady state of the forwards chain, when 0 is entered, there is a probability 45
704

that the previous state was GA.

6

6. Expected time from state i till next time in state j

What is the expected number of steps from state i to the next time in state j?
Fix j. For i = 1, . . . , s, let Ni be the number of steps from state i to the next time in state j

(so if i = j we are counting until the next time at state j, and Nj ≥ 1). A system of equations for
E(Ni) can be found as follows:

Start in state i. There is a probability Pir of going one step to state r. If that is state j we
are done, and otherwise the expected number of steps after that first step is E(Nr), giving a total
(including the first step) of E(Nr + 1) = E(Nr) + 1.

E(Ni) = Pij·1+
s∑

r=1
r 6=j

PirE(Nr+1) = Pij+
s∑

r=1
r 6=j

Pir·(E(Nr)+1) =
s∑

r=1

Pir+
s∑

r=1
r 6=j

Pir·E(Nr) = 1+
s∑

r=1
r 6=j

Pir·E(Nr)

Doing this for all s states, i = 1, . . . , s, gives s equations in the s unknowns E(N1), . . . , E(Ns). For
machine M1, the expected times until reaching the final state are found as follows:

E(N1) = 0 + 3
4
(E(N1) + 1) + 1

4
(E(N2) + 1) = 1 + 3

4
E(N1) + 1

4
E(N2)

E(N2) = 0 + 1
2
(E(N1) + 1) + 1

4
(E(N2) + 1) + 1

4
(E(N3) + 1) = 1 + 1

2
E(N1) + 1

4
E(N2) + 1

4
E(N3)

E(N3) = 0 + 3
4
(E(N1) + 1) + 1

4
(E(N4) + 1) = 1 + 3

4
E(N1) + 1

4
E(N4)

E(N4) = 1
4

+ 1
2
(E(N1) + 1) + 1

4
(E(N2) + 1) = 1 + 1

2
E(N1) + 1

4
E(N2)

E(N5) = 0 + 3
4
(E(N1) + 1) + 1

4
(E(N4) + 1) = 1 + 3

4
E(N1) + 1

4
E(N4)

This is five equations in five unknowns E(Ni), i = 1, 2, 3, 4, 5. In matrix format,
−1/4 1/4 0 0 0
1/2 −3/4 1/4 0 0
3/4 0 −1 1/4 0
1/2 1/4 0 −1 0
3/4 0 0 1/4 −1




E(N1)
E(N2)
E(N3)
E(N4)
E(N5)

 =


−1
−1
−1
−1
−1


(General pattern on left side: Start with P . Zero out column j. Then subtract 1 from each diagonal
entry. Right side: column vector of −1’s.)

Solving gives E(N1) = 272, E(N2) = 268, E(N3) = 256, E(N4) = 204, E(N5) = 256.
We may compute E(g(Ni)) for any function g by setting up recurrences in the same way:

E(g(Ni)) = Pijg(1) +
∑
r 6=j

PirE(g(Nr + 1)) = expansion depending on g

6.1. Variance of Ni’s: To compute Var(Ni) = E(Ni
2) − E(Ni)

2, we set up a system of equations
for E(Ni

2):

E(Ni
2) = Pij · 12 +

s∑
r=1
r 6=j

PirE((Nr + 1)2) = Pij +
s∑

r=1
r 6=j

Pir(E(Nr
2) + 2E(Nr) + 1)

=

Pij +
s∑

r=1
r 6=j

Pir · 1

+ 2
s∑

r=1
r 6=j

Pir · E(Nr) +
s∑

r=1
r 6=j

Pir · E(Nr
2)

= 1 + 2
s∑

r=1
r 6=j

Pir · E(Nr) +
s∑

r=1
r 6=j

Pir · E(Nr
2)

Solve first for E(N1), . . . , E(Ns) and plug in. That leaves s unknowns, E(N1
2), . . . , E(Ns

2), and s
equations, which could be solved.

7

6.2. Complete distribution of Ni’s: The complete distribution of Ni is encoded in its probability
generating function E(xNi) =

∑∞
n=0 P (Ni = n)xn. We can solve for this through recursions:

E(xNi) = Pij · x1 +
s∑

r=1
r 6=j

PirE(xNr+1) = Pij · x +
s∑

r=1
r 6=j

PirxE(xNr) i = 1, . . . , s

Write fi(x) = E(xNi) to change this into

fi(x) = Pij · x +
s∑

r=1
r 6=j

Pirx fr(x) = x

Pij +
s∑

r=1
r 6=j

Pirfr(x)

 i = 1, . . . , s

For machine M1 and the expected times until reaching state j = 5, this gives equations

f1(x) = x
(

3
4
f1(x) + 1

4
f2(x) + 0f3(x) + 0f4(x) + 0

)
f2(x) = x

(
1
2
f1(x) + 1

4
f2(x) + 1

4
f3(x) + 0f4(x) + 0

)
f3(x) = x

(
3
4
f1(x) + 0f2(x) + 0f3(x) + 1

4
f4(x) + 0

)
f4(x) = x

(
1
2
f1(x) + 1

4
f2(x) + 0f3(x) + 0f4(x) + 1

4

)
f5(x) = x

(
3
4
f1(x) + 0f2(x) + 0f3(x) + 1

4
f4(x) + 0

)
which in matrix form is

3
4
x − 1 1

4
x 0 0 0

1
2
x 1

4
x − 1 1

4
x 0 0

3
4
x 0 −1 1

4
x 0

1
2
x 1

4
x 0 −1 0

3
4
x 0 0 1

4
x −1




f1(x)
f2(x)
f3(x)
f4(x)
f5(x)

 =


0
0
0

−1
4
x

0


Solving gives

f1(x) = x4/D(x)

f2(x) = x3(4 − 3t)/D(x)

f3(x) = x2(x2 − 16x + 16)/D(x)

f4(x) = x(−3x3 + 4x2 − 64x + 64)/D(x)

f5(x) = x2(x2 − 16x + 16)/D(x)

where D(x) = x4 − 16x3 +16x2 − 256x+256. (Since this involves symbollic computation instead of
numerical computation, Maple or Mathematica are much better suited to solving this than Matlab.)

Several things can be done with these. We will just consider f1(x), giving the distribution of
times from state 1 until state 5. The Taylor series of f1(x) about t = 0 can be computed:

f1(x) =
1

256
x4 +

1

256
x5 +

15

4096
x6 +

15

4096
x7 +

15

4096
x8 +

239

65536
x9 + · · ·

so for example, P (N1 = 9) = 239/65536.
It’s an irreducible Markov chain, so the probability of reaching state j is 1:

∑∞
n=0 P (N1 = i) = 1.

Indeed, plugging in x = 1 gives f1(1) = 1.
The mean is µ1 = f ′

1(1) = 272 and the variance is f ′′
1 (1)+µ1−µ1

2 = 145856+272−2722 = 72144,
so the standard deviation is

√
72144 ≈ 268.596.

If it wasn’t irreducible, state 5 might not ever be reached, so fi(1) could be less than 1. Replace
fi(x) by gi(x) = fi(x)/fi(1) to get a conditional pgf, mean, and variance (conditioned on eventually
reaching state 5).

8

7. Expected number of visits to a state before reaching another state

For M1 or M2, starting at 0, what is the expected number of times GAG will be visited before
the destination GAGA is first reached?

For M3, starting at 0, what is the expected number of times any particular intermediate word
will be visited before either destination GAGA or GTGA is first reached?

Choose some destination states (and include all absorbing states in the list). Order all states

so that destination states are last. Make a new machine M̃ by modifying M so that the desti-

nation states are turned into absorbing states, and call the transition matrix P̃ . We have block
decompositions

P =

[
R T
S U

]
P̃ =

[
R T
0 I

]
where R is the the submatrix of P with rows/columns of non-destination states. Row/column
names in R,S, T are the same as in P even though some states are missing from each (i.e., do not
renumber them to start at 1). If all states can reach some destination state, then some row sums
of R are < 1 and all eigenvalues of R have absolute value < 1.

Fix i and j. Start in state i at t = 0. In M̃ , let Dt be an indicator random variable, Dt = 1 if
Xt = j, Dt = 0 otherwise. The total number of visits to state j is N =

∑
t Dt, and

E(N) =
∞∑

t=0

E(Dt) =
∞∑

t=0

P (Xt = j|X0 = i) =
∞∑

t=0

(Rt)ij = ((I − R)−1)ij = Hij

where H = (I − R)−1. (We used R instead of P because P has one or more eigenvalues equal to
1, so I − P can’t be inverted. R has all eigenvalues < 1 in absolute value so the geometric series∑∞

t=0 Rt = (I − R)−1 converges.) For M̃1 and M̃2, we have

R =


3/4 1/4 0 0
1/2 1/4 1/4 0
3/4 0 0 1/4
1/2 1/4 0 0

 H = (I − R)−1 =


188 64 16 4
184 64 16 4
176 60 16 4
140 48 12 4


Interpretation of first row of H (from state 0): Starting in state 0 and counting until GAGA
is first encountered, the expected number of visits to 0 (including being there to start) is 188, and
the expected number of visits to G, GA, and GAG, respectively, are 64, 16, and 4.

In M1 (original, not modified M̃1), we could also ask for the expected number of visits to state j
between two visits to GAGA. In M (unmodified), if k is a destination state and j is a non-destination
state, the expected number of visits to j after leaving k and before entering a destination state
again, is (SH)kj. For M1, SH = [3/4 0 0 1/4]H = [176 60 15 4]. Notice it’s almost the 3rd row of
H except for the 3rd entry because GA and GAGA have the same outgoing edges in M1; H33 includes
1 for starting at GA while (SH)53 only counts later visits to GA.

Back to M̃ . The probability of ending in absorbing state k is (HT)ik. This is obtained by
considering the time t of the last state j before k, where j runs over non-absorbing states:

P (X∞ = k|X0 = i) =
∞∑

t=0

∑
j

P (Xt = j|X0 = i)P (Xt+1 = k|Xt = j)

=
∞∑

t=0

∑
j

(Rt)ijTjk =
∞∑

t=0

(RtT)ik = (HT)ik

For M̃1: HT =


188 64 16 4
184 64 16 4
176 60 16 4
140 48 12 4




0
0
0

1/4

 =


1
1
1
1



9

so starting from any of the first 4 states, the probability of reaching GAGA is 1. For M̃3 with 6
non-absorbing and 2 absorbing states, HT would be 6 × 2 and the row sums would all equal 1.

We previously computed E(N). For the variance of N , we need

E(N2) =
∑

t

E((Dt)
2) + 2

∞∑
t1=0

∞∑
t2=t1+1

E(Dt1Dt2)

=
∑

t

E(Dt) + 2
∞∑

t1=0

∞∑
t2=t1+1

P (Xt1 = j|X0 = i)P (Xt2 = j|Xt1 = j)

= E(N) + 2
∞∑

t1=0

∞∑
u2=1

(Rt1)ij(R
u2)jj where u2 = t2 − t1 > 0

= E(N) + 2

(∞∑
t1=0

Rt1

)
ij

(∞∑
u2=1

Ru2

)
jj

= Hij + 2Hij(R(I − R)−1)jj = Hij(1 + 2(Hjj − 1)) = Hij(2Hjj − 1)

so Var(N) = E(N2) − (E(N))2 = Hij(2Hjj − 1) − (Hij)
2. Let Nij be the number of visits to j

before absorption if we start in state i, where i, j are non-absorbing states. Then in matrix form,

[Var(Nij)] =


35156 4032 240 12
35144 4032 240 12
35024 4020 240 12
32900 3792 228 12

 [σ(Nij)] =

[√
Var(Nij)

]
≈


187.50 63.50 15.49 3.46
187.47 63.50 15.49 3.46
187.15 63.40 15.49 3.46
181.38 61.58 15.10 3.46


8. Powers of matrices

While P1n became constant for n ≥ 4, this is not usually the case. The first several powers of
P = P2, to 6 decimal digits, are

P 1 =


0.750000 0.250000 0.000000 0.000000 0.000000
0.500000 0.250000 0.250000 0.000000 0.000000
0.750000 0.000000 0.000000 0.250000 0.000000
0.500000 0.250000 0.000000 0.000000 0.250000
0.750000 0.250000 0.000000 0.000000 0.000000

, P 2 =


0.687500 0.250000 0.0625000 0.0000000 0.0000000
0.687500 0.187500 0.0625000 0.0625000 0.0000000
0.687500 0.250000 0.0000000 0.0000000 0.0625000
0.687500 0.250000 0.0625000 0.0000000 0.0000000
0.687500 0.250000 0.0625000 0.0000000 0.0000000

,

P3 =


0.687500 0.234375 0.0625000 0.0156250 0.0000000
0.687500 0.234375 0.0468750 0.0156250 0.0156250
0.687500 0.250000 0.0625000 0.0000000 0.0000000
0.687500 0.234375 0.0625000 0.0156250 0.0000000
0.687500 0.234375 0.0625000 0.0156250 0.0000000

, P 4 =


0.687500 0.234375 0.0585938 0.0156250 0.00390625
0.687500 0.238281 0.0585938 0.0117188 0.00390625
0.687500 0.234375 0.0625000 0.0156250 0.00000000
0.687500 0.234375 0.0585938 0.0156250 0.00390625
0.687500 0.234375 0.0585938 0.0156250 0.00390625

,

P 5 =


0.687500 0.235352 0.0585938 0.0146484 0.00390625
0.687500 0.235352 0.0595703 0.0146484 0.00292969
0.687500 0.234375 0.0585938 0.0156250 0.00390625
0.687500 0.235352 0.0585938 0.0146484 0.00390625
0.687500 0.235352 0.0585938 0.0146484 0.00390625

, P 6 =


0.687500 0.235352 0.0588379 0.0146484 0.00366211
0.687500 0.235107 0.0588379 0.0148926 0.00366211
0.687500 0.235352 0.0585938 0.0146484 0.00390625
0.687500 0.235352 0.0588379 0.0146484 0.00366211
0.687500 0.235352 0.0588379 0.0146484 0.00366211

,. . .

As n → ∞, the rows all approach the stationary distribution

~ϕ ′ =
(

11
16

, 4
17

, 1
17

, 1
68

, 1
272

) ≈ (0.687500, 0.235294, 0.0588235, 0.0147059, 0.00367647).

8.1. Diagonalizeable matrices. Suppose an s × s matrix P has distinct eigenvalues λ1, . . . , λs.
Usually some of these are complex numbers, so we will use ′ to denote the “adjoint” instead of

the “transpose” of a matrix or vector: it is transpose combined with complex conjugate.
Then P can be written in the format P = V DV −1 where D is the diagonal matrix

D =


λ1 0 · · · 0 0
0 λ2 · · · 0 0
...

...
...

...
...

0 0 · · · λs−1 0
0 0 · · · 0 λs



10

and column j of V is a (right) eigenvector of P , ~rj, with eigenvalue λj: P~rj = λj~rj. It turns out

that row j of V −1 is a left eigenvector, ~̀ ′
j, of P with eigenvalue λj: ~̀ ′

jP = λj
~̀ ′

j.

Then P 2 = V DV −1 V DV −1 = V D2V −1, and in general, P n = V DnV −1. Since D is diagonal,
Dn is easy to compute:

Dn =


λ1

n 0 · · · 0 0
0 λ2

n · · · 0 0
...

...
...

...
...

0 0 · · · λs−1
n 0

0 0 · · · 0 λs
n


A shortcut to compute P n = V DnV −1 is to use the spectral decomposition:

P n =
s∑

j=1

λj
n~rj

~̀ ′
j

where ~rj
~̀ ′

j is column vector times row vector
= s × s square matrix

8.2. Jordan Canonical Form. Only some matrices can be diagonalized. There is a generalization
of the factorization P = V DV −1 to any matrix. Any matrix P , including one with repeated
eigenvalues, can be written in the format P = V JV −1, where J is mostly zeros except for the
eigenvalues of P along its diagonal and some 1’s just above the diagonal according to a certain rule
(below). Then P n = V JnV −1 and the powers Jn are easy to compute. Since the Jordan Canonical
Form includes diagonalizeable matrices as a special case, the best approach is to compute the JCF
in the first place, instead of trying to diagonalize and possibly failing to do so. This is the format:

J =


B1 0 0 · · ·
0 B2 0 · · ·
0 0 B3 · · ·
...

...
...

. . .

 and each Bi is a block matrix, Bi =


λi 1 0 0 · · · 0 0
0 λi 1 0 · · · 0 0
0 0 λi 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · λi 1
0 0 0 0 · · · 0 λi


The dimensions of the Bi’s are related to multiplicities of eigenvalues. Then P n = V JnV −1, where

Jn =


B1

n 0 0 · · ·
0 B2

n 0 · · ·
0 0 B3

n · · ·
...

...
...

. . .

 Bi
n =


λi

n
(

n
1

)
λi

n−1
(

n
2

)
λi

n−2 · · · · · · · · ·
0 λi

n
(

n
1

)
λi

n−1 · · · · · · · · ·
.

0 0 0 · · · λi
n
(

n
1

)
λi

n−1

0 0 0 · · · 0 λi
n


where a row of Bi

n with fewer than n cells right of the diagonal would have the extra binomial
terms dropped, and a row with more than n cells right of the diagonal would be padded with 0’s.

The columns of V (or rows of V −1) are “generalized eigenvectors.” An ordinary (right) eigenvector

satisfies P~v = λ~v, or (P − λI)~v = ~0. The generalized ones satisfy (P − λI)k~v = ~0 for various k’s.
Although the word “Canonical” is used, the factorization P = V JV −1 for any matrix (or P =

V DV −1 for diagonalizeable matrices) is not unique, so different programs and different people’s
hand computations can return different but correct answers. See a linear algebra book for details.

8.3. Eigenvalues. In a Markov chain, the absolute values of the eigenvalues are between 0 and
1, and there is at least one eigenvalue equal to 1 (right eigenvector: ~1; left eigenvector: stationary
distribution). For an irreducible aperiodic Markov chain, there is only one eigenvalue equal to 1
and the others have smaller absolute value. So in P n = V DnV −1 or P n = V JnV −1, as n → ∞,
the diagonal term for eigenvalue 1 stays equal to 1, and the others go to 0, making P n approach
a constant limit. The second largest |λj| determines how fast P n converges to the stationary
distribution, since its nth powers give the second largest term.

For an irreducible periodic Markov chain with period d, there are d eigenvalues equal to the dth
roots of unity, 1, e2πi/d, e4πi/d, e6πi/d, . . . , e2(d−1)πi/d. As n → ∞, instead of a stationary distribution,
the Markov chain cycles through d different distributions.

11

For a reducible Markov chain on s states, there are eigenvalues contributed from each component,
as well as additional ones to bring it up to s eigenvalues in total (counting multiplicities).

So machine M4 has an eigenvalue 1 for the component with state 3; an eigenvalue 1 and an
eigenvalue −1 for the component with {4, 5, 6, 7} (since it has period 2); eigenvalues 1, e2πi/3, e4πi/3

for the component with {8, 9, 10}; and 4 additional eigenvalues of absolute value less than 1, so that
there are 10 eigenvalues in all, counting multiplicities. At least two of those additional eigenvalues
equal 0, because P 2 has columns 1 and 2 equal to 0 (no 2-step transitions to states 1 or 2). The
two remaining eigenvalues depend on the probabilities of the edges, which were not fully specified.
Here is one possibility:

P =



0 1
3 0 1

3 0 0 0 1
3 0 0

0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1

2 0 1
2 0 0 0

0 0 0 1
2 0 1

2 0 0 0 0
0 0 0 0 1

2 0 1
2 0 0 0

0 0 0 1
2 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0



= V JV −1

V =



1 0 1
3

1
3 − 1

3 0 − 2
3

1
3

1
3e−2πi/3 1

3e2πi/3

0 3 1 0 0 −2 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 2 0 0 0 0
0 0 0 1 −1 0 2 0 0 0
0 0 0 1 1 −2 0 0 0 0
0 0 0 1 −1 0 −2 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 e2πi/3 e−2πi/3

0 0 0 0 0 0 0 1 e−2πi/3 e2πi/3



, J =



0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 e−2πi/3 0
0 0 0 0 0 0 0 0 0 e2πi/3



V −1 =



1 0 − 1
3 0 0 0 − 1

3 0 0 − 1
3

0 1
3 − 1

3
1
6 0 −1

6 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1

4
1
4

1
4

1
4 0 0 0

0 0 0 1
4 − 1

4
1
4 − 1

4 0 0 0
0 0 0 1

4 0 −1
4 0 0 0 0

0 0 0 0 1
4 0 −1

4 0 0 0
0 0 0 0 0 0 0 1

3
1
3

1
3

0 0 0 0 0 0 0 1
3

1
3e−2πi/3 1

3e2πi/3

0 0 0 0 0 0 0 1
3

1
3e2πi/3 1

3e−2πi/3



12

9. Matlab examples

9.1. Example 1. Here is a stochastic matrix and some of its powers. (Stochastic because its entries
are ≥ 0 and its row sums are 1. This one is actually doubly stochastic because the column sums
are also 1.)
>> M = [[.5,.25,.25];[.25,.5,.25];[.25,.25,.5]]

M =

0.5000 0.2500 0.2500

0.2500 0.5000 0.2500

0.2500 0.2500 0.5000

>> M^2

ans =

0.3750 0.3125 0.3125

0.3125 0.3750 0.3125

0.3125 0.3125 0.3750

>> M^3

ans =

0.3438 0.3281 0.3281

0.3281 0.3438 0.3281

0.3281 0.3281 0.3438

>> M^10

ans =

0.3333 0.3333 0.3333

0.3333 0.3333 0.3333

0.3333 0.3333 0.3333

Eigenvalues and eigenvectors: Matlab’s eig(M) returns [V,D]. Diagonal elements of D are
eigenvalues. Columns of V are right eigenvectors if M is diagonalizeable, but some columns are
garbage if it’s not. There is no warning, so you have to check.
>> [V,D] = eig(M)

V =

0.4082 0.7071 0.5774

0.4082 -0.7071 0.5774

-0.8165 0 0.5774

D =

0.2500 0 0

0 0.2500 0

0 0 1.0000

M has three eigenvalues: λ1 = .25, λ2 = .25, λ3 = 1. Two of them are equal so it is possible that
M is not diagonalizeable. Verify that M = V DV −1:
>> V * D * inv(V)

ans =

0.5000 0.2500 0.2500

0.2500 0.5000 0.2500

0.2500 0.2500 0.5000

So M is diagonalizeable.
The right eigenvectors of M corresponding to these eigenvalues are the columns of V in the exact

same order as in D:

~r1 =

 0.4082
0.4082
−0.8165

 ~r2 =

 0.7071
−0.7071

0

 ~r3 =

0.5774
0.5774
0.5774


Remember, any scalar multiple of an eigenvector can be used in place of it, so a different program
(or doing it by hand) would potentially return a different result, such as

~r1 =

 1
1
−2

 ~r2 =

 1
−1
0

 ~r3 =

1
1
1


Also, the eigenvalues could be in a different order on the diagonal of D, in which case the order of
the eigenvectors (as columns of V and rows of V −1) would have to change to match that.

13

Let’s verify that ~r1 is an eigenvector with eigenvalue λ1:

>> V(:,1)

ans =

0.4082

0.4082

-0.8165

>> D(1,1)

ans =

0.2500

>> M * V(:,1)

ans =

0.1021

0.1021

-0.2041

>> D(1,1) * V(:,1)

ans =

0.1021

0.1021

-0.2041

>> right1 = V(:,1)

right1 =

0.4082

0.4082

-0.8165

>> lambda1 = D(1,1)

lambda1 =

0.2500

>> M * right1

ans =

0.1021

0.1021

-0.2041

>> lambda1 * right1

ans =

0.1021

0.1021

-0.2041

Next look at V −1 and the left eigenvectors.
>> Vi = inv(V)

Vi =

0.4082 0.4082 -0.8165

0.7071 -0.7071 0.0000

0.5774 0.5774 0.5774

The rows of V −1 (denoted Vi) are the left eigenvectors of M :

~̀′
1 = (0.4082, 0.4082,−0.8165) ~̀′

2 = (0.7071,−0.7071, 0) ~̀′
3 = (0.5774, 0.5774, 0.5774)

Again, they can be rescaled, so by hand you would probably have used

~̀′
1 = (1, 1,−2) ~̀′

2 = (1,−1, 0) ~̀′
3 = (1, 1, 1)

Verify ~̀′
1 is a left eigenvector:

>> Vi(1,:)

ans =

0.4082 0.4082 -0.8165

>> Vi(1,:) * M

ans =

0.1021 0.1021 -0.2041

>> D(1,1) * Vi(1,:)

ans =

0.1021 0.1021 -0.2041

Stationary distribution: We need to normalize the left eigenvector whose eigenvalue equals 1.

In this case it was λ3 = 1, so we need to take ~̀ ′
3, and normalize to make its components add to 1;

do this by dividing by the sum of its entries:
>> Vi(3,:)

ans =

0.5774 0.5774 0.5774

>> sstate = Vi(3,:) / sum(Vi(3,:))

sstate =

0.3333 0.3333 0.3333

14

Spectral decomposition: S1 = ~r1
~̀ ′

1, S2 = ~r2
~̀ ′

2, S3 = ~r3
~̀ ′

3, and Mn = λ1
n S1 + λ2

n S2 +
λ3

n S3 = .25n(S1 + S2) + 1nS3 which approaches S3 as n increases,

>> S1 = V(:,1) * Vi(1,:)

S1 =

0.1667 0.1667 -0.3333

0.1667 0.1667 -0.3333

-0.3333 -0.3333 0.6667

>> S2 = V(:,2) * Vi(2,:)

S2 =

0.5000 -0.5000 0.0000

-0.5000 0.5000 -0.0000

0 0 0

>> S1+S2

ans =

0.6667 -0.3333 -0.3333

-0.3333 0.6667 -0.3333

-0.3333 -0.3333 0.6667

>> S3 = V(:,3) * Vi(3,:)

S3 =

0.3333 0.3333 0.3333

0.3333 0.3333 0.3333

0.3333 0.3333 0.3333

Note that the rows of S3 all equal the stationary distribution. (However, it’s a coincidence that
the columns do also.) Now we’ll verify the spectral decomposition formula using M3:
>> lambda1 = D(1,1)

lambda1 =

0.2500

>> lambda2 = D(2,2)

lambda2 =

0.2500

>> lambda3 = D(3,3)

lambda3 =

1.0000

>> M^3

ans =

0.3438 0.3281 0.3281

0.3281 0.3438 0.3281

0.3281 0.3281 0.3438

>> lambda1^3*S1 + lambda2^3*S2 + lambda3^3*S3

ans =

0.3437 0.3281 0.3281

0.3281 0.3437 0.3281

0.3281 0.3281 0.3438

9.2. Example 2: Complex Numbers.
>> x = [1+2i,3+4i,5+6i]

x =

1.0000 + 2.0000i 3.0000 + 4.0000i 5.0000 + 6.0000i

Note that ’ is adjoint (conjugate and transpose combined):
>> x’

ans =

1.0000 - 2.0000i

3.0000 - 4.0000i

5.0000 - 6.0000i

>> real(x)

ans =

1 3 5

>> imag(x)

ans =

2 4 6

>> conj(x)

ans =

1.0000 - 2.0000i 3.0000 - 4.0000i 5.0000 - 6.0000i

15

9.3. Example 3: The matrix P2 for machine M2: Complex Eigenvalues and Eigenvec-
tors, and Jordan Canonical Form.
>> P2 = [

[3/4, 1/4, 0, 0, 0]; %

[2/4, 1/4, 1/4, 0, 0]; % G

[3/4, 0, 0, 1/4, 0]; % GA

[2/4, 1/4, 0, 0, 1/4]; % GAG

[3/4, 1/4, 0, 0, 0]; % GAGA

]

P2 =

0.7500 0.2500 0 0 0

0.5000 0.2500 0.2500 0 0

0.7500 0 0 0.2500 0

0.5000 0.2500 0 0 0.2500

0.7500 0.2500 0 0 0

Eigenvalues and eigenvectors, first try:
>> [V2,D2] = eig(P2)

V2 =

0.4472 0.2182 + 0.0000i 0.2182 - 0.0000i 0.0000 + 0.1857i 0.0000 - 0.1857i

0.4472 -0.6547 - 0.0000i -0.6547 + 0.0000i -0.1857 - 0.5571i -0.1857 + 0.5571i

0.4472 0.2182 - 0.0000i 0.2182 + 0.0000i 0.7428 0.7428

0.4472 -0.6547 -0.6547 0.0000 + 0.1857i 0.0000 - 0.1857i

0.4472 0.2182 - 0.0000i 0.2182 + 0.0000i -0.0000 + 0.1857i -0.0000 - 0.1857i

D2 =

1.0000 0 0 0 0

0 -0.0000 + 0.0000i 0 0 0

0 0 -0.0000 - 0.0000i 0 0

0 0 0 0.0000 + 0.2500i 0

0 0 0 0 0.0000 - 0.2500i

Notice the eigenvalues: 1 corresponds to the right eigenvector ~1 that’s a column of 1’s, and to the
left eigenvector that’s the stationary distribution. There are two 0’s so P2 has a duplicate eigenvalue
and we will have to use Jordan Canonical form. The interpretation of one of them is that two rows
of P2 are equal, the top and bottom row, so (1, 0, 0, 0,−1)′ (′ turns row vector into column vector)
is a right eigenvector of P2 with eigenvalue 0. There are also two complex eigenvalues, 0 ± i/4,
which come in a conjugate pair (they must since P2 is real), and their corresponding eigenvectors
(columns 4 and 5 of V 2) also come in a complex conjugate pair.

V 2 is not invertible; it’s determinant should be 0, but Matlab has a numerical precision error:
>> det(V2)

ans =

-4.5552e-009 +1.1903e-017i

So we redo this with the Jordan Canonical Form.
>> [V2,J2] = jordan(P2)

V2 =

-0.0625 -0.5170 -0.1728 0.1176 + 0.0294i 0.1176 - 0.0294i

0.1875 1.3011 -0.1728 -0.3824 + 0.0294i -0.3824 - 0.0294i

-0.0625 0.4830 -0.1728 0.1176 - 0.4706i 0.1176 + 0.4706i

0.1875 1.3011 -0.1728 0.1176 + 0.0294i 0.1176 - 0.0294i

-0.0625 0.4830 -0.1728 0.1176 + 0.0294i 0.1176 - 0.0294i

J2 =

0 1.0000 0 0 0

0 0 0 0 0

0 0 1.0000 0 0

0 0 0 0 + 0.2500i 0

0 0 0 0 0 - 0.2500i

16

Inverse of corrected V2 to get left eigenvectors:
>> V2i = inv(V2)

V2i =

3.2727 0 -0.0000 4.0000 -7.2727

-1.0000 0 0.0000 0 1.0000

-3.9787 -1.3617 -0.3404 -0.0851 -0.0213

0 -1.0000 0 + 1.0000i 1.0000 0 - 1.0000i

0 -1.0000 0 - 1.0000i 1.0000 0 + 1.0000i

Stationary distribution: The eigenvalue equal to 1 is the third one (λ3 = 1), so the stationary
distribution is row 3 of V2i = V2−1, suitably normalized:
>> V2i(3,:) / sum(V2i(3,:))

ans =

0.6875 0.2353 0.0588 0.0147 0.0037

This agrees with the computation stated earlier in this document, ~ϕ ′ =
(

11
16

, 4
17

, 1
17

, 1
68

, 1
272

) ≈
(0.687500, 0.235294, 0.0588235, 0.0147059, 0.00367647). It also agrees with a high power of P2:
>> P2^10

ans =

0.6875 0.2353 0.0588 0.0147 0.0037

0.6875 0.2353 0.0588 0.0147 0.0037

0.6875 0.2353 0.0588 0.0147 0.0037

0.6875 0.2353 0.0588 0.0147 0.0037

0.6875 0.2353 0.0588 0.0147 0.0037

Spectral decomposition: Since P2 wasn’t diagonalizeable, the Jordan Canonical Form must be
used and the spectral form gets harder. The general formula P = V JV −1 gives P = V JnV −1.
Here, P = P2 and J = J2. The powers of J2 will be (fill in 0’s for blanks):

(J2)n =


[
0 1
0 0

]n

1n

(i/4)n

(−i/4)n



[
0 1
0 0

]0

=

[
1 0
0 1

]
[
0 1
0 0

]1

=

[
0 1
0 0

]
[
0 1
0 0

]n

=

[
0 0
0 0

]
for n ≥ 2

By writing (J2)n as a sum of the four blocks shown, this gives a block expansion (in terms of left

and right eigenvectors; ~rj is column j of V2, ~̀ ′
j is row j of V2−1)

(P2)n = (V2)(J2)n(V2)−1 =
[
~r1 ~r2

] [0 1
0 0

]n [~̀ ′
1

~̀ ′
2

]
+ ~r3(1)n~̀ ′

3 + ~r4(i/4)n~̀ ′
4 + ~r5(−i/4)n~̀ ′

5

When n ≥ 2, the first term vanishes, so for n ≥ 2, we will have (P2)n = 1nS3+(i/4)nS4+(−i/4)nS5 =
S3 + (i/4)nS4 + (−i/4)nS5, where
>> S3 = V2(:,3) * V2i(3,:)

S3 =

0.6875 0.2353 0.0588 0.0147 0.0037

0.6875 0.2353 0.0588 0.0147 0.0037

0.6875 0.2353 0.0588 0.0147 0.0037

0.6875 0.2353 0.0588 0.0147 0.0037

0.6875 0.2353 0.0588 0.0147 0.0037

>> S4 = V2(:,4) * V2i(4,:)

S4 =

0 -0.1176 - 0.0294i -0.0294 + 0.1176i 0.1176 + 0.0294i 0.0294 - 0.1176i

0 0.3824 - 0.0294i -0.0294 - 0.3824i -0.3824 + 0.0294i 0.0294 + 0.3824i

0 -0.1176 + 0.4706i 0.4706 + 0.1176i 0.1176 - 0.4706i -0.4706 - 0.1176i

0 -0.1176 - 0.0294i -0.0294 + 0.1176i 0.1176 + 0.0294i 0.0294 - 0.1176i

0 -0.1176 - 0.0294i -0.0294 + 0.1176i 0.1176 + 0.0294i 0.0294 - 0.1176i

17

>> S5 = V2(:,5) * V2i(5,:)

S5 =

0 -0.1176 + 0.0294i -0.0294 - 0.1176i 0.1176 - 0.0294i 0.0294 + 0.1176i

0 0.3824 + 0.0294i -0.0294 + 0.3824i -0.3824 - 0.0294i 0.0294 - 0.3824i

0 -0.1176 - 0.4706i 0.4706 - 0.1176i 0.1176 + 0.4706i -0.4706 + 0.1176i

0 -0.1176 + 0.0294i -0.0294 - 0.1176i 0.1176 - 0.0294i 0.0294 + 0.1176i

0 -0.1176 + 0.0294i -0.0294 - 0.1176i 0.1176 - 0.0294i 0.0294 + 0.1176i

S3 corresponds to the stationary distribution. S4 and S5 are complex conjugates, so (i/4)nS4 +
(−i/4)nS5 is a sum of two complex conjugates; thus, it is real-valued, even though complex numbers
are involved in the computation. Now verify the formula:
>> P2^3

ans =

0.6875 0.2344 0.0625 0.0156 0

0.6875 0.2344 0.0469 0.0156 0.0156

0.6875 0.2500 0.0625 0 0

0.6875 0.2344 0.0625 0.0156 0

0.6875 0.2344 0.0625 0.0156 0

>> 1^3*S3 + (i/4)^3*S4 + (-i/4)^3*S5

ans =

0.6875 0.2344 0.0625 0.0156 0.0000

0.6875 0.2344 0.0469 0.0156 0.0156

0.6875 0.2500 0.0625 -0.0000 0.0000

0.6875 0.2344 0.0625 0.0156 0.0000

0.6875 0.2344 0.0625 0.0156 0.0000

9.4. Example 4: The matrix P1 for machine M1: Jordan Canonical Form.
>> P1 = [

[3/4, 1/4, 0, 0, 0]; %

[2/4, 1/4, 1/4, 0, 0]; % G

[3/4, 0, 0, 1/4, 0]; % GA

[2/4, 1/4, 0, 0, 1/4]; % GAG

[3/4, 0, 0, 1/4, 0]; % GAGA

]

P1 =

0.7500 0.2500 0 0 0

0.5000 0.2500 0.2500 0 0

0.7500 0 0 0.2500 0

0.5000 0.2500 0 0 0.2500

0.7500 0 0 0.2500 0

>> [V1,D1] = eig(P1)

V1 =

0.4472 0.2182 + 0.0000i 0.2182 - 0.0000i -0.2182 - 0.0000i -0.2182 + 0.0000i

0.4472 -0.6547 -0.6547 0.6547 0.6547

0.4472 0.2182 - 0.0000i 0.2182 + 0.0000i -0.2182 + 0.0000i -0.2182 - 0.0000i

0.4472 -0.6547 - 0.0000i -0.6547 + 0.0000i 0.6547 - 0.0000i 0.6547 + 0.0000i

0.4472 0.2182 - 0.0000i 0.2182 + 0.0000i -0.2182 + 0.0000i -0.2182 - 0.0000i

D1 =

1.0000 0 0 0 0

0 0.0000 + 0.0000i 0 0 0

0 0 0.0000 - 0.0000i 0 0

0 0 0 0.0000 + 0.0000i 0

0 0 0 0 0.0000 - 0.0000i

>> imag(D1)

ans =

1.0e-08 *

0 0 0 0 0

0 0.3596 0 0 0

0 0 -0.3596 0 0

0 0 0 0.1803 0

0 0 0 0 -0.1803

18

>> imag(V1)

ans =

1.0e-07 *

0 0.0105 -0.0105 -0.0052 0.0052

0 0 0 0 0

0 -0.1151 0.1151 0.0577 -0.0577

0 -0.0000 0.0000 -0.0000 0.0000

0 -0.1151 0.1151 0.0577 -0.0577

>> V1 * D1 * inv(V1)

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 3.355158e-25.

ans =

1.0e+07 *

0.0000 + 0.0000i 0.0000 - 0.3549i 0.0000 + 0.7099i 0.0000 + 0.3549i -0.0000 - 0.7099i

0.0000 + 0.0000i 0.0000 - 0.9693i 0.0000 + 1.9386i 0.0000 + 0.9693i -0.0000 - 1.9386i

0.0000 + 0.0000i 0.0000 - 0.3549i 0.0000 + 0.7099i 0.0000 + 0.3549i -0.0000 - 0.7099i

0.0000 + 0.0000i 0.0000 - 0.9693i 0.0000 + 1.9386i -0.0000 + 0.9693i -0.0000 - 1.9386i

0.0000 + 0.0000i 0.0000 - 0.3549i 0.0000 + 0.7099i 0.0000 + 0.3549i -0.0000 - 0.7099i

We see that there is one eigenvalue equal to 1 and four eigenvalues equal to 0, and that V1 is not
invertible and P1 is not diagonalizeable. Use the Jordan Canonical Form instead:
>> [V1,J1] = jordan(P1)

V1 =

-0.0039 -0.0195 -0.0707 -0.2298 -0.0430

0.0117 0.0430 0.1339 0.4066 -0.0430

-0.0039 0.0430 0.1793 0.5884 -0.0430

0.0117 0.0430 0.3839 1.4066 -0.0430

-0.0039 0.0430 0.1793 1.5884 -0.0430

J1 =

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

>> V1i = inv(V1)

V1i =

0 52.3636 -64.0000 11.6364 0

-16.0000 16.0000 13.0909 -16.0000 2.9091

0 -4.0000 4.0000 4.0000 -4.0000

0 0 -1.0000 0 1.0000

-16.0000 -5.4545 -1.3636 -0.3636 -0.0909

>> V1 * J1 * V1i

ans =

0.7500 0.2500 -0.0000 -0.0000 0.0000

0.5000 0.2500 0.2500 -0.0000 0.0000

0.7500 -0.0000 -0.0000 0.2500 -0.0000

0.5000 0.2500 0.0000 -0.0000 0.2500

0.7500 -0.0000 -0.0000 0.2500 -0.0000

Eigenvalues and eigenvectors: The eigenvalues are on the diagonal of J1: 0, 0, 0, 0, 1. The
right eigenvector for eigenvalue λ5 = 1 is the 5th column of V1:
>> V1(:,5)

ans =

-0.0430

-0.0430

-0.0430

-0.0430

-0.0430

which you would probably rescale to all 1’s.
Since the first 4 eigenvalues λ1 = · · · = λ4 = 0 are in a 4 × 4 block of J1 with 1’s above the

diagonal, the first of them corresponds to a right eigenvector

19

>> V1(:,1)

ans =

-0.0039

0.0117

-0.0039

0.0117

-0.0039

and the other three (λ2 = λ3 = λ4 = 0) correspond to “generalized eigenvectors.”
Stationary distribution:
>> sstate = V1i(5,:) / sum(V1i(5,:))

sstate =

0.6875 0.2344 0.0586 0.0156 0.0039

This agrees with the computation from the text:

~ϕ ′ =

(
11

16
,
15

64
,

15

256
,

1

64
,

1

256

)
≈ (0.6875, 0.2344, 0.0586, 0.0156, 0.0039).

Powers of P1: The “spectral decomposition” formula as given was only for diagonalizeable matri-
ces. For a Jordan Canonical Form, P = V JV −1 gives P n = V JnV −1, and Jn is easy to compute:

>> J1

J1 =

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

>> J1^2

ans =

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

>> J1^3

ans =

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

>> J1^4

ans =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

>> J1^5

ans =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

Reverse Markov Chain:
>> d_sstate = diag(sstate)

d_sstate =

0.6875 0 0 0 0

0 0.2344 0 0 0

0 0 0.0586 0 0

0 0 0 0.0156 0

0 0 0 0 0.0039

>> Q1 = inv(d_sstate) * P1’ * d_sstate

Q1 =

0.7500 0.1705 0.0639 0.0114 0.0043

0.7333 0.2500 0 0.0167 0

0 1.0000 0 0 0

0 0 0.9375 0 0.0625

0 0 0 1.0000 0

Solving for E(Ni): We had a system of equations C~x = ~r. Enter the coefficient matrix C and the
vector r and use C \ r to solve it. You could enter the matrices C and r directly, but I will show
how to get C directly from P for the case considered in this handout (P is 5 × 5 and we want the
expected time until state 5); the rule to construct C from P was to zero out column j (here j = 5)
of P and then subtract 1 from each diagonal entry, and the rule to construct r is that it’s a column
vector of −1’s.

20

>> C = P1

C =

0.7500 0.2500 0 0 0

0.5000 0.2500 0.2500 0 0

0.7500 0 0 0.2500 0

0.5000 0.2500 0 0 0.2500

0.7500 0 0 0.2500 0

>> C(:,5) = 0 % we want time until state 5, so zero out the 5th column

C =

0.7500 0.2500 0 0 0

0.5000 0.2500 0.2500 0 0

0.7500 0 0 0.2500 0

0.5000 0.2500 0 0 0

0.7500 0 0 0.2500 0

>> eye(5) % gives a 5 x 5 identity matrix

ans =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

>> C = C - eye(5) % C is a 5 x 5 matrix

C =

-0.2500 0.2500 0 0 0

0.5000 -0.7500 0.2500 0 0

0.7500 0 -1.0000 0.2500 0

0.5000 0.2500 0 -1.0000 0

0.7500 0 0 0.2500 -1.0000

>> rhs = -1 * ones(5,1)

rhs =

-1

-1

-1

-1

-1

>> C \ rhs

ans =

272.0000

268.0000

256.0000

204.0000

256.0000

Expected number of visits to each state before reaching GAGA:
>> R1 = P1(1:4,1:4)

R =

0.7500 0.2500 0 0

0.5000 0.2500 0.2500 0

0.7500 0 0 0.2500

0.5000 0.2500 0 0

>> H1 = inv(eye(4)-R1)

H1 =

188.0000 64.0000 16.0000 4.0000

184.0000 64.0000 16.0000 4.0000

176.0000 60.0000 16.0000 4.0000

140.0000 48.0000 12.0000 4.0000

Variance of that: In Matlab, diag(matrix)=vector, diag(vector)=matrix, and m .^ k is ele-
mentwise kth powers instead of the matrix kth power.
>> diag(H1)

ans =

188.0000

64.0000

16.0000

4.0000

21

>> diag(diag(H1))

ans =

188.0000 0 0 0

0 64.0000 0 0

0 0 16.0000 0

0 0 0 4.0000

>> VarN1 = H1 * (2*diag(diag(H1))-eye(4)) - (H1 .^ 2)

VarN1 =

1.0e+04 *

3.5156 0.4032 0.0240 0.0012

3.5144 0.4032 0.0240 0.0012

3.5024 0.4020 0.0240 0.0012

3.2900 0.3792 0.0228 0.0012

>> SigmaN1 = VarN1 .^ (1/2)

SigmaN1 =

187.4993 63.4980 15.4919 3.4641

187.4673 63.4980 15.4919 3.4641

187.1470 63.4035 15.4919 3.4641

181.3836 61.5792 15.0997 3.4641

Probability of eventually reaching GAGA from each state:
>> T1 = P1(1:4,5)

T1 =

0

0

0

0.2500

>> H1 * T1

ans =

1.0000

1.0000

1.0000

1.0000

22

10. Maple example: pgf for complete distribution of Ni’s

Here is how to use Maple to solve the system of equations for f1(x), . . . , f5(x) from Sec. 6.2
in this handout; and then get the pgf for N1 by computing the Taylor series of f1(x); and then
compute total probability for N1 (f1(1) = 1), the mean E(N1) = f ′

1(1), and variance Var(N1) =
f ′′

1 (1) + f ′
1(1) − (f ′

1(1))2:

> sols :=

solve({f1(x)=x*(3/4*f1(x) + 1/4*f2(x)),

f2(x)=x*(1/2*f1(x) + 1/4*f2(x) + 1/4*f3(x)),

f3(x)=x*(3/4*f1(x) + 1/4*f4(x)),

f4(x)=x*(1/2*f1(x) + 1/4*f2(x) + 1/4),

f5(x)=x*(3/4*f1(x) + 1/4*f4(x))},

{f1(x),f2(x),f3(x),f4(x),f5(x)});

4 3 2 2

x x (-4 + 3 x) x (x + 16 - 16 x)

sols := {f1(x) = ----, f2(x) = - -------------, f3(x) = -------------------,

%1 %1 %1

2 3 2 2

x (-4 x + 3 x - 64 + 64 x) x (x + 16 - 16 x)

f4(x) = - ----------------------------, f5(x) = -------------------}

%1 %1

2 3 4

%1 := 16 x - 16 x + 256 - 256 x + x

> g1 := sols[1];

4

x

g1 := f1(x) = --------------------------------

2 3 4

16 x - 16 x + 256 - 256 x + x

> g1 := rhs(sols[1]);

4

x

g1 := --------------------------------

2 3 4

16 x - 16 x + 256 - 256 x + x

> taylor(g1,x=0,10);

4 5 15 6 15 7 15 8 239 9 10

1/256 x + 1/256 x + ---- x + ---- x + ---- x + ----- x + O(x)

4096 4096 4096 65536

> N1_totalprob := subs(x=1,g1);

N1_totalprob := 1

> diff(g1,x);

4 2 3 3

x (32 x - 48 x - 256 + 4 x) 4 x

- ----------------------------------- + --------------------------------

2 3 4 2 2 3 4

(16 x - 16 x + 256 - 256 x + x) 16 x - 16 x + 256 - 256 x + x

> N1_mean := subs(x=1,diff(g1,x));

N1_mean := 272

> N1_var := subs(x=1,diff(g1,x,x)) + N1_mean - N1_mean^2;

N1_var := 72144

