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Probability Generating Functions (pgf)

Let Y be an integer-valued random variable with a lower bound
(typically Y > 0).
The probability generating function is defined as

PY(t) = E(tY) =
∑

y

PY(y)t
y

Simple example
Suppose PX(x) = x/10 for x = 1, 2, 3, 4, PX(x) = 0 otherwise. Then

PX(t) = .1t + .2t2 + .3t3 + .4t4

Poisson distribution
Let X be Poisson with mean µ. Then

PX(t) =
∞∑

k=0

e−µµk

k!
· tk =

∞∑
k=0

e−µ(µ t)k

k!
= e−µeµ t = eµ(t−1)
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Properties of pgfs

Plugging in t = 1 gives total probability=1:

PY(1) =
∑

y

PY(y) = 1

Differentiating and plugging in t = 1 gives E(Y):

P ′Y(t) =
∑

y PY(y) · y ty−1

P ′Y(1) =
∑

y PY(y) · y = E(Y)

Variance is Var(Y) = P ′′Y (1) + P
′
Y(1) − (P ′Y(1))

2:

P ′′Y (t) =
∑

y PY(y) · y(y − 1) ty−2

P ′′Y (1) =
∑

y PY(y) · y(y − 1) = E(Y(Y − 1)) = E(Y2) − E(Y)

Var(Y) = E(Y2) − (E(Y))2 = P ′′Y (1) + P
′
Y(1) − (P ′Y(1))

2
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Example of pgf properties: Poisson
Properties

PY(t) =
∑

y PY(y)t
Y

PY(1) = 1

E(Y) = P ′Y(1)

Var(Y) = E(Y2) − (E(Y))2 = P ′′Y (1) + P
′
Y(1) − (P ′Y(1))

2

For X Poisson with mean µ, we saw PX(t) = eµ(t−1).

PX(1) = eµ(1−1) = e0 = 1

P ′X(t) = µ eµ(t−1) and P ′X(1) = µ eµ(1−1) = µ
Indeed, E(X) = µ for Poisson.

P ′′X (t) = µ
2 eµ(t−1)

P ′′X (1) = µ
2 eµ(1−1) = µ2

Var(X) = P ′′X (1) + P
′
X(1) − (P ′X(1))

2 = µ2 + µ− µ2 = µ
Indeed, Var(X) = µ for Poisson.
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Probability generating function of X + Y

Consider adding rolls of two biased dice together:

X = roll of biased 3-sided die
Y = roll of biased 5-sided die

P(X + Y = 2) = PX(1)PY(1)

P(X + Y = 3) = PX(1)PY(2) + PX(2)PY(1)

P(X + Y = 4) = PX(1)PY(3) + PX(2)PY(2) + PX(3)PY(1)

P(X + Y = 5) = PX(1)PY(4) + PX(2)PY(3) + PX(3)PY(2)

P(X + Y = 6) = PX(1)PY(5) + PX(2)PY(4) + PX(3)PY(3)

P(X + Y = 7) = PX(2)PY(5) + PX(3)PY(4)

P(X + Y = 8) = PX(3)PY(5)

Prof. Tesler Wilcoxon and Mann-Whitney Tests Math 283 / Fall 2018 5 / 36



Probability generating function of X + Y

PX(t) = PX(1)t + PX(2)t
2 + PX(3)t

3

PY(t) = PY(1)t + PY(2)t
2 + PY(3)t

3 + PY(4)t
4 + PY(5)t

5

PX(t)PY(t) =
(
PX(1)PY(1)

)
t2 +(

PX(1)PY(2) + PX(2)PY(1)
)
t3 +(

PX(1)PY(3) + PX(2)PY(2) + PX(3)PY(1)
)
t4 +(

PX(1)PY(4) + PX(2)PY(3) + PX(3)PY(2)
)
t5 +(

PX(1)PY(5) + PX(2)PY(4) + PX(3)PY(3)
)
t6 +(

PX(2)PY(5) + PX(3)PY(4)
)
t7 +(

PX(3)PY(5)
)
t8

= P(X + Y = 2)t2 + · · · + P(X + Y = 8)t8

= PX+Y(t)
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Probability generating function of X + Y

Suppose X and Y are independent random variables. Then

PX+Y(t) = PX(t) · PY(t)

Proof.

PX+Y(t) = E(tX+Y) = E(tX tY) = E(tX)E(tY) = PX(t)PY(t) �

Second proof.

PX(t) · PY(t) =
(∑

x P(X = x)tx
)(∑

y P(Y = y)ty
)

Multiply that out and collect by powers of t. The coefficient of tw is∑
x P(X = x)P(Y = w − x)

Since X, Y are independent, this simplifies to P(X + Y = w), which
is the coefficient of tw in PX+Y(t). �
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Binomial distribution

Suppose X1, . . . , Xn are i.i.d. with P(Xi = 1) = p, P(Xi = 0) = 1 − p
(Bernoulli distribution).

PXi(t) = (1 − p)t0 + pt1 = 1 − p + pt

The Binomial(n, p) distribution is X = X1 + · · ·+ Xn.

PX(t) = PX1(t) · · ·PXn(t) = (1 − p + pt)n

Check:

((1 − p) + pt)n =

n∑
k=0

(
n
k

)
(1 − p)n−kpk · tk =

n∑
k=0

PY(k)t
k

where Y is the Binomial(n, p) distribution.

Note: If X and Y have the same pgf, then they have the same
distribution.
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Moment generating function (mgf) in Chapter 1.1 & 2.3

Let Y be a continuous or discrete random variable.
The moment generating function (mgf) isMY(θ) = E(eθY).
Discrete: Same as the pgf with t = eθ, and not just for
integer-valued variables:

MY(θ) =
∑

y PY(y)e
θy

Continuous: It’s essentially the “2-sided Laplace transform” of fY(y):
MY(θ) =

∫∞
−∞ fY(y)e

θy dy

The derivative tricks for pgf have analogues for mgf:
dk

dθkMY(θ) = E(Yk eθY)

M
(k)
Y (0) = E(Yk) = kth moment of Y

MY(0) = E(1) = 1 = Total probability
M ′Y(0) = E(Y) = Mean

M ′′Y (0) = E(Y2) so Var(Y) =M ′′Y (0) − (M ′Y(0))
2
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Non-parametric hypothesis tests

Parametric hypothesis tests assume the random variable has a
specific probability distribution (normal, binomial, geometric, . . . ).
The competing hypotheses both assume the same type of
distribution but with different parameters.

A distribution free hypothesis test (a.k.a. non-parametric
hypothesis test) doesn’t assume any particular type of distribution.
So it can be applied even if the distribution isn’t known.

If the type of distribution is known, a parametric test that takes it
into account can be more precise (smaller Type II error for same
Type I error) than a non-parametric test that doesn’t.
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Wilcoxon Signed Rank Test
Let X be a continuous random variable with a symmetric distribution.

Let M be the median of X:
P(X > M) = P(X < M) = 1/2, or FX(M) = .5.

Note that if the pdf of X is symmetric, the median equals the
mean. If it’s not symmetric, they usually are not equal.

We will develop a test for
H0 : M = M0 vs. H1 : M , M0 (or M < M0 or M > M0)

based on analyzing a sample x1, . . . , xn of data.

Example: If U, V have the same distribution, then X = U − V has a
symmetric distribution centered around its median, 0.
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Computing the Wilcoxon test statistic
Is median M0 = 5 plausible, given data 1.1, 8.2, 2.3, 4.4, 7.5, 9.6?

Get a sample x1, . . . , xn: 1.1, 8.2, 2.3, 4.4, 7.5, 9.6
Compute the following:

Compute each xi − M0.
Order |xi − M0| from smallest to largest and assign ranks 1, 2, . . . , n
(1=smallest, n=largest).

Let ri be the rank of |xi − M0| and zi =

{
0 if xi − M0 < 0
1 if xi − M0 > 0.

Note: Since X is continuous, P(X − M0 = 0) = 0.

Compute test statistic w = z1r1 + · · ·+ znrn (sum of ri’s with xi > M0)

i xi xi − M0 ri sign zi
1 1.1 −3.9 5 − 0
2 8.2 3.2 4 + 1
3 2.3 −2.7 3 − 0
4 4.4 −.6 1 − 0
5 7.5 2.5 2 + 1
6 9.6 4.6 6 + 1

n = 6

|xi − M0| in order:
.6, 2.5, 2.7, 3.2, 3.9, 4.6

w = 4 + 2 + 6 = 12
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Computing the pdf of W

The variable whose rank is i contributes either 0 or i to W.
Under the null hypothesis, both of those have probability 1/2.
Call this contribution Wi, either 0 or i with prob. 1/2. Then

W = W1 + · · ·+ Wn

The Wi’s are independent because the signs are independent.
The pgf of Wi is

PWi(t) = E(tWi) =
1
2

t0 +
1
2

ti =
1 + ti

2
The pgf of W is

PW(t) = PW1+···+Wn(t) = PW1(t) · · ·PWn(t) = 2−n
n∏

i=1

(1 + ti)

Expand the product. The coefficient of tw is P(W=w), the pdf of W.

Prof. Tesler Wilcoxon and Mann-Whitney Tests Math 283 / Fall 2018 13 / 36



Distribution of W for n = 6
PW(t) = 1

26

(
1 + t1) (1 + t2) (1 + t3) (1 + t4) (1 + t5) (1 + t6)

= 1
64

(
1 + t + t2 + 2 t3 + 2 t4 + 3 t5 + 4 t6 + 4 t7

+ 4 t8 + 5 t9 + 5 t10 + 5 t11 + 5 t12 + 4 t13

+ 4 t14 + 4 t15 + 3 t16 + 2 t17 + 2 t18 + t19 + t20 + t21)
Example: P(W = 6) = 4/64 = 1/16 = .0625

Cumulative distribution of W
w P(W 6 w)
0 1/64 = 0.015625
1 2/64 = 0.031250
2 3/64 = 0.046875
3 5/64 = 0.078125
4 7/64 = 0.109375
5 10/64 = 0.156250
6 14/64 = 0.218750
7 18/64 = 0.281250

w P(W 6 w)
8 22/64 = 0.343750
9 27/64 = 0.421875

10 32/64 = 0.500000
11 37/64 = 0.578125
12 42/64 = 0.656250
13 46/64 = 0.718750
14 50/64 = 0.781250
15 54/64 = 0.843750

w P(W 6 w)
16 57/64 = 0.890625
17 59/64 = 0.921875
18 61/64 = 0.953125
19 62/64 = 0.968750
20 63/64 = 0.984375
21 64/64 = 1.000000

(The cdf is defined at all reals. It jumps at w = 0, . . . , 21 and is constant in-between.)

Prof. Tesler Wilcoxon and Mann-Whitney Tests Math 283 / Fall 2018 14 / 36



Distribution of W for n = 6

PDF CDF
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Properties of W (assuming H0: M = M0)

Range
When all signs are negative, w = 0 + 0 + · · · = 0.
When all signs are positive, w = 1 + 2 + · · ·+ n = n(n + 1)/2.
w ranges from 0 to n(n + 1)/2.
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Properties of W (assuming H0: M = M0)

x y0M

Reflecting a point
Reflecting point x around M0 gives M0 − x = y − M0, so y = 2M0 − x.

Symmetry
If H0 is correct, then reflecting all data in the sample around M0 by
setting yi = 2M0 − xi for all i:

gives new values y1, . . . , yn equally probable to x1, . . . , xn;
keeps same magnitudes |xi − M0| = |yi − M0| and same ranks;
inverts all signs, switching whether a rank is / isn’t included in w;

sends w to n(n+1)
2 − w.

So the pdf of W is symmetric about the center value w =
n(n+1)

4 .
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Properties of W (assuming H0: M = M0)

Mean and variance
Mean: E(W) = 1

4 n(n + 1) Variance: Var(W) = 1
24 n(n + 1)(2n + 1)

Central Limit Theorem
When n > 12, the Z-score of W is approximately standard normal:

Z =
W − n(n + 1)/4√

n(n + 1)(2n + 1)/24
FW(w) ≈ Φ(z) for n > 12

W1, W2, . . . are independent but not identically distributed.
A generalization of CLT by Lyapunov applies; see “Lyapunov CLT”
in the Central Limit Theorem article on Wikipedia.
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Computing P-value

Note that P(W > w) = P(W 6 n(n+1)
2 − w) by symmetry of the pdf.

Let w1 = min
{

w, n(n+1)
2 − w

}
and w2 = max

{
w, n(n+1)

2 − w
}

.

Intuitively, w is close to n(n + 1)/4 when H0 is true, and much
smaller or much larger when H0 is false.

Two-sided test: H0: M = 5 vs. H1: M , 5.
Values “more extreme than w” are those farther away from
n(n + 1)/4 than w in either direction:

P = P(W 6 w1) + P(W > w2) = 2P(W 6 w1)

In the example, w = 12 and n(n+1)
2 = 6·7

2 = 21, giving
P = P(W > 12) + P(W 6 9) = 2P(W 6 9) = 2(27/64) = 0.843750.
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Performing the Wilcoxon Signed Rank Test

Hypotheses: H0: M = 5 vs. H1: M , 5

Choose a significance level α: α = 5%

Get a sample x1, . . . , xn: 1.1, 8.2, 2.3, 4.4, 7.5, 9.6

Compute test statistic w: w = 12

Compute P-value: P = 0.843750

Decision:
Reject H0 if P 6 α.
Accept H0 if P > α. .843750 > .05 so accept H0.
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One-sided tests
Example: Test H0: M = 5 but true median=10

> 1
2 chance for xi − M = xi − 5 to be

positive and < 1
2 chance to be negative.

This increases the chance of including
each rank in the sum for W, and leads to
higher values of W. −5 0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

x

pd
f

One-sided test: H0: M = 5 vs. H1: M > 5.
Higher medians lead to higher values of w, so values “more
extreme than w” are > w:

P = P(W > w) = P(W > 12) = 1 − P(W 6 11) = 27/64 = 0.421875

One-sided test: H0: M = 5 vs. H1: M < 5.
Lower medians lead to lower values of w, so values “more extreme
than w” are 6 w:

P = P(W 6 w) = P(W 6 12) = 42/64 = 0.656250
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Computing w and P-value in Matlab or R

Matlab
>> x = [1.1,8.2,2.3,4.4,7.5,9.6];
>> M0 = 5;
>> signrank(x,M0)

0.8438
>> [p,h,stats] = signrank(x,M0)
p = 0.8438
h = 0
stats =

signedrank: 9

>> stats.signedrank
9

Note stats.signedrank = 9 is our w1, which is
not necessarily w.

R
> x = c(1.1,8.2,2.3,4.4,7.5,9.6)
> test = wilcox.test(x,mu=5)
> test$statistic
V

12
> test$p.value
[1] 0.84375

Prof. Tesler Wilcoxon and Mann-Whitney Tests Math 283 / Fall 2018 22 / 36



Critical region for a given significance level α

Cumulative distribution of W
w P(W 6 w)
0 1/64 = 0.015625
1 2/64 = 0.031250
2 3/64 = 0.046875
3 5/64 = 0.078125
4 7/64 = 0.109375
5 10/64 = 0.156250
6 14/64 = 0.218750
7 18/64 = 0.281250

w P(W 6 w)
8 22/64 = 0.343750
9 27/64 = 0.421875

10 32/64 = 0.500000
11 37/64 = 0.578125
12 42/64 = 0.656250
13 46/64 = 0.718750
14 50/64 = 0.781250
15 54/64 = 0.843750

w P(W 6 w)
16 57/64 = 0.890625
17 59/64 = 0.921875
18 61/64 = 0.953125
19 62/64 = 0.968750
20 63/64 = 0.984375
21 64/64 = 1.000000

Significance level α = .05
P 6 .05 for “w 6 0 or w > 21”
The critical region (where H0 is rejected) is w = 0 or 21.
The acceptance region (where H0 is accepted) is 1 6 w 6 20.
The Type I error rate is really 2/64 = 0.031250.
Discrete distributions will often have Type I error rate < α.
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Critical region for a given significance level α

Cumulative distribution of W
w P(W 6 w)
0 1/64 = 0.015625
1 2/64 = 0.031250
2 3/64 = 0.046875
3 5/64 = 0.078125
4 7/64 = 0.109375
5 10/64 = 0.156250
6 14/64 = 0.218750
7 18/64 = 0.281250

w P(W 6 w)
8 22/64 = 0.343750
9 27/64 = 0.421875

10 32/64 = 0.500000
11 37/64 = 0.578125
12 42/64 = 0.656250
13 46/64 = 0.718750
14 50/64 = 0.781250
15 54/64 = 0.843750

w P(W 6 w)
16 57/64 = 0.890625
17 59/64 = 0.921875
18 61/64 = 0.953125
19 62/64 = 0.968750
20 63/64 = 0.984375
21 64/64 = 1.000000

Other significance levels
α = .01: P > 2(.015625) = .031250 for all w.
So we never have P 6 .01. Thus, H0 is always accepted.
α = .10: Accept H0 for 3 6 w 6 18.
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Mann-Whitney Test, a.k.a. “Wilcoxon two-sample test”

Let X, Y be random variables whose distributions are the same
except for a possible shift, Y ∼ X + C for some constant C.

We will test the hypotheses
H0: X and Y have the same median (i.e., C = 0).
H1: X and Y do not have the same median (i.e., C , 0).

This is a non-parametric test.
In practice, it’s used if the plots look similar but possibly shifted.
However, if there are other differences in the distributions than just
the shift, the P-values will be off.

Two sets of authors (Mann-Whitney vs. Wilcoxon) developed
essentially equivalent tests for this; we’ll do the one due to
Wilcoxon.
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Computing the statistic U
Wilcoxon’s definition

Data:
Sample x1, . . . , xm for X: 11, 13 (m = 2)
Sample xm+1, . . . , xm+n for Y: 12, 15, 14 (n = 3)

Replace data by ranks from smallest (1) to largest (m + n):
Ranks for X: 1, 3
Ranks for Y: 2, 5, 4

U is the sum of the X ranks: U0 = 1 + 3 = 4

Ties may happen in discrete case. If there’s a tie for 2nd and 3rd
smallest, use 2.5 for both of them.
This is a two sample test .
The Wilcoxon Signed Rank test previously covered is a one
sample test .
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Computing the statistic U
Mann-Whitney’s definition

We’ll call Mann-Whitney’s statistic Ũ, although they called it U.

Ũ is the number of pairs (x, y) with x in the X sample, y in the Y
sample, and x < y.

Data:
Sample x1, . . . , xm for X: 11, 13 (m = 2)
Sample xm+1, . . . , xm+n for Y: 12, 15, 14 (n = 3)

11 < 12, 11 < 15, 11 < 14, 13 < 15, 13 < 14 so Ũ = 5.

The statistics are related by Ũ = mn + m(m + 1)/2 − U.

We’ll stick with Wilcoxon’s definition and ignore this one.
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Computing the distribution of U: permutation test
Under H0, X and Y have the same distribution. So we are just as
likely to have seen any m = 2 of those numbers for the X sample
and the other n = 3 for Y. Resample them as follows:
Permute the m + n = 2 + 3 = 5 numbers in all (m + n)! = 120 ways.
Treat the first m of them as a new sample of X and the last n as a
new sample of Y, compute U for each.

X Y U
11, 13 12, 15, 14 4
11, 13 12, 14, 15 4
11, 13 14, 12, 15 4
11, 13 14, 15, 12 4
11, 13 15, 12, 14 4
11, 13 15, 14, 12 4
13, 11 12, 15, 14 4
13, 11 12, 14, 15 4
13, 11 14, 12, 15 4
13, 11 14, 15, 12 4
13, 11 15, 12, 14 4
13, 11 15, 14, 12 4
11, 12 13, 15, 14 3
11, 12 13, 14, 15 3
· · · · · · · · ·

m! n! = 2! 3! = 2 · 6 = 12 of the
permutations give the same partition
of numbers for X and Y.
So it would suffice to list partitions
instead of permutations.

There are (m+n)!
m! n! =

(m+n
n

)
partitions;(5

2

)
= 10 partitions in this case.
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Computing the distribution of U: permutation test

Resample the data by partitioning the numbers between X & Y in
all
(m+n

m

)
=
(2+3

2

)
=
(5

2

)
= 10 possible ways. Compute U for each.

As a short cut, we can just work with the ranks:

X ranks Y ranks U
1, 2 3, 4, 5 3
1, 3 2, 4, 5 4
1, 4 2, 3, 5 5
1, 5 2, 3, 4 6
2, 3 1, 4, 5 5
2, 4 1, 3, 5 6
2, 5 1, 3, 4 7
3, 4 1, 2, 5 7
3, 5 1, 2, 4 8
4, 5 1, 2, 3 9

Compute the PDF and CDF of U from
this (all 10 cases are equally likely):

U PU(u) FU(u)
< 3 0/10 0/10

3 1/10 1/10
4 1/10 2/10
5 2/10 4/10
6 2/10 6/10
7 2/10 8/10
8 1/10 9/10
9 1/10 10/10

P-value of U0 = 4: The mirror image of 4 is 8.
P = P(U 6 4) + P(U > 8) = 2P(U 6 4) = 2(.2) = .4.
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Computing P-value and U in Matlab or R

Matlab
>> ranksum([11,13],[12,15,14])

0.4000

>> [p,h,stats] = ...
ranksum([11,13],[12,15,14])

p = 0.4000
h = 0
stats =

ranksum: 4

>> stats.ranksum
4

Note: “...” lets you break a command
onto two lines, both at the command line
and in scripts. If you type it on one line,
don’t use “...”

R
> test = wilcox.test(c(11,13),
+ c(12,15,14))
> test$p.value
[1] 0.4
> test$statistic
W
1

Notes:

R computes a different statistic “W”
instead of U.

W = U − m(m + 1)/2
In this case, W = 4 − 2(2 + 1)/2 = 1.

The + prompt is given when you break
a command onto two lines at the
command line. Don’t type it in.
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Properties of U

Minimum: 1 + 2 + · · ·+ m = m(m + 1)/2
Maximum: (n + 1) + (n + 2) + · · ·+ (n + m) = m(2n + m + 1)/2

Assuming H0:
Expected value: E(U) = m(m + n + 1)/2
Variance: Var(U) = mn(m + n + 1)/12

Symmetry of PDF: In the sample data, switch the ith least and ith
largest elements for all i.

The ranks added together are replaced by the complementary
ranks, so U goes to its mirror image around m(m + n + 1)/2.
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Expected value of U

Each rank has probability m
m+n to be in the X group and hence in

the rank sum.

Let Uj =

{
0 prob. n/(m + n);
j prob. m/(m + n)

and U = U1 + · · ·+ Um+n.

The Uj’s are dependent!

E(Uj) = 0 · n
m+n + j · m

m+n = j · m
m+n

Expectation is still additive, even though the Uj’s are dependent:
E(U) = E(U1) + · · ·+ E(Um+n)

= (1 + 2 + · · ·+ (m + n)) m
m+n

=
(m+n)(m+n+1)

2 · m
m+n =

m(m+n+1)
2

Variance is harder: it is not additive since the Uj’s are dependent.
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Covariance

Let X and Y be random variables, possibly dependent.
Let µX = E(X), µY = E(Y)

Var(X + Y) = E((X + Y − µX − µY)
2) = E

(((
X − µX

)
+
(
Y − µY

))2
)

= E
((

X − µX

)2
)
+ E

((
Y − µY

)2
)
+ 2E

(
(X − µX)(Y − µY)

)
= Var(X) + Var(Y) + 2 Cov(X, Y)

where the covariance of X and Y is defined as
Cov(X, Y) = E

(
(X − µX)(Y − µY)

)
Expanding gives an alternate formula
Cov(X, Y) = E(XY) − E(X)E(Y):
Cov(X, Y) = E

(
(X − µX)(Y − µY)

)
= E(XY) − µX E(Y) − µY E(X) + µXµY = E(XY) − E(X)E(Y)

Var(X1 +X2 + · · ·+Xn) = Var(X1)+ · · ·+Var(Xn)+ 2
∑

16i<j6n
Cov(Xi, Xj)
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Variance of U

Variance of Uj

Let Uj =

{
0 prob. n/(m + n);
j prob. m/(m + n)

and U = U1 + · · ·+ Um+n.

E(Uj) = j · m
m+n and E(Uj

2) = j2 · m
m+n

Var(Uj) = E(Uj
2) − (E(Uj))

2 = j2 m
m+n − j2 m2

(m+n)2 = j2 mn
(m+n)2

Covariance between Ui and Uj for i , j

Ui Uj is 0 if the rank i and/or j element is in the Y sample.
It’s i · j if both are in the X sample, which has prob. m(m−1)

(m+n)(m+n−1) .

E(Ui Uj) = ij · m(m−1)
(m+n)(m+n−1)

Cov(Ui, Uj)= E(Ui Uj) − E(Ui)E(Uj)

= ij ·
( m(m−1)
(m+n)(m+n−1) −

m2

(m+n)2

)
= −ij mn

(m+n)2(m+n−1)
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Variance of U

Variance computation
Var(Uj) = j2 mn

(m+n)2 and Cov(Ui, Uj) = −ij mn
(m+n)2(m+n−1) (if i , j)

Var(U) = sum of variances + twice the sum of covariances:

m+n∑
j=1

j2
mn

(m + n)2 − 2
∑

16i<j6m+n

ij · mn
(m + n)2(m + n − 1)

= · · · = mn(m + n + 1)
12

Details
Plug in these identities (at k = m + n) and simplify:

1 + 2 + · · ·+ k = k(k + 1)/2

12 + 22 + · · ·+ k2 = k(k + 1)(2k + 1)/6

2
∑

16i<j6k

i·j=(1+2+· · ·+k)2−(12+22+· · ·+k2)=k(k−1)(k+1)(3k+2)/12
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Variations
Unpaired data

Let f ([x1, . . . , xm], [xm+1, . . . , xm+n]) be any test statistic on two
vectors of samples (a two sample test statistic).
Follow the same procedure as for computing U and its P-value,
but compute f instead of U on each permutation of the x’s.
Ewens & Grant explains this for the t-statistic, pages 141 & 464.

Paired data
Unpaired: If m subjects are measured who do not have a
condition and n subjects are measured who do have it, and these
are independent, then the Mann-Whitney test could be used.
Paired: Suppose there are n subjects, with

xi =measurement before treatment
yi =measurement after treatment, i = 1, . . . , n.

Mann-Whitney on [x1, . . . , xn], [y1, . . . , yn] ignores the pairing.
Use Wilcoxon Signed Rank test on x1 − y1, . . . , xn − yn: median=0?
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