## Final Exam Review Problems

1 The temperature at the point $(x, y)$ is given by a function $T$ satisfying $T_{x}(5,1)=3$ and $\mathrm{T}_{\mathrm{y}}(5,1)=-2$. A bug crawling along the plane is located at the point $\left(\mathrm{t}^{3}-\mathrm{t}-1, \sqrt{2 \mathrm{t}-3}\right.$ ) at time $t$. Compute the rate of change of the temperature along the bug's path at the time $t=2$.
2 Find the distance between the planes $6 x+3 y-2 z=0$ and $6 x+3 y-2 z=8$.
3 Find (and classify) the critical values of the function $f(x, y)=x^{3}+x y^{2}-13 x-4 y$.
4 If a box of girth 100 inches is sitting on the floor, compute the largest possible exposed surface area.
[Note: the "girth" of a box is the sum of its length, width, and height.]
5 Let $A=(1,1,1), B=(2,8,1), C=(5,4,-4)$.
(a) Find the angle between the lines $\overline{A B}$ and $\overline{A C}$.
(b) Compute the area of triangle $\triangle A B C$.
(c) Find the equation of the plane through $A, B$, and $C$.
(d) The line through the point $(-2,5, p)$ is perpendicular to the plane from (c) and passes through one of the points $\{A, B, C\}$. Compute $p$, and determine which of the three points the line contains.
6 Early yesterday morning I was hiking on the surface $z=3 x^{2}+5 x y+8 y$, but my compass wasn't working. I wandered around randomly, and the only thing I know for sure was that I was heading away from the sun (which was in the East), because it was so bright. At one point I came to a sign telling me I was at the point $(-1,2,9)$.
(a) If I want to maintain my exact elevation, in which direction should I walk?
(b) After having an energy drink or three, I felt ready to start climbing. If I want to walk up the hill at a $45^{\circ}$ incline, starting at the same point, what direction (or directions) could I head in?
(c) After the caffeine crash, I decided to head downhill. If I'm starting at the same point, what's the steepest slope of descent I could head in, and what unit direction should I take?
7 A cone is constructed with diameter 3 cm and height 2 cm , but the variances on the measurements are both 1 mm . Compute the variance for the surface area of the cone.
[Note: the area of the slanted side of a cone is $\pi r$ r, where $s$ is the slant height.]
8 Find the mass of a lamina in the plane bounded by the lines $y=0$ and $y=\sin x$, where $\frac{\pi}{4}<x<\frac{3 \pi}{4}$ and the density function is $\rho(x, y)=x+2$.
9 Evaluate the following integrals:
(a) $\iint_{R} \frac{e^{x y}}{y} d A$, where $R$ is the region bounded by the curves $x=1, y=1$, and $x^{3} y=1$.
(b) $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} x z \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y$
(c) $\iiint_{R} z d V$, where $R$ is the region $4 \leq x^{2}+y^{2}+z^{2} \leq 9$ bounded by the planes $z=0$ and $z=7-2 y$.
(d) $\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y$

10 Find the volume of the region between the cone $z=3 r$ and the sphere $\rho=\sqrt{10}$. (You have to choose which coordinate system to work with.)
11 The location of a particle at time $t$ is $\left(\sin (2 t), e^{-t}, \ln (4 t+1)\right)$.
(a) Find the velocity, acceleration, and speed at time $t=0$.
(b) Set up, but do not evaluate, an integral for computing the total distance travelled by the particle over the interval $0 \leq \mathrm{t} \leq 5$.
(c) Show that the the speed of the particle is never greater than 3 for $t \geq 0$.

