Midterm Review! The harder problems are marked with an asterisk (*).

Review Problems

1 Compute the angles between the following vectors:
(a) $\langle 1,2\rangle$ and $\langle-8,4\rangle$
(b) $\langle 5,-3,4\rangle$ and $\langle 0,7,-1\rangle$
(c) $\langle 1,1,0,-1,0\rangle$ and $\langle 3,2,-1,-7,1\rangle$

2 Find the area of the triangle with corners $(0,2,4),(-1,-1,6)$, and $(1,3,1)$.
3 If $\langle 3,4\rangle$ and $\langle 1, x\rangle$ form a 90° angle, find x.
4 Find the equation for the set of all points that are three times as far from $(0,1,2)$ as they are from ($4,1,-2$).
5 Compute the sine of the angle between the vectors $\langle 2,1,2\rangle$ and $\langle 0,-1,3\rangle$.
6 A parallelepiped has one vertex at $(0,0,0)$ and adjacent vertices at $(1,2,4),(1,3,9)$, and $(1,-4,16)$. Compute its volume.
7 Find the equation of each of the planes described below:
(a) the plane parallel to $x+7 y-9 z=5$ and passing through $(2,2,2)$.
(b) the plane perpendicular to the line of intersection of the planes $x+4 y-z=6$ and $2 x-y-3 z=1$, and passing through $(4,0,4)$.
(c) the plane parallel to the lines $\langle 3 \mathrm{t}+5, \mathrm{t}, 8-\mathrm{t}\rangle$ and $\langle 1-\mathrm{t}, 2-\mathrm{t}, \mathrm{t}+4\rangle$ and passing through $(5,5,1)$.
(d) the plane containing the line $\langle 7 \mathrm{t}+7,5 \mathrm{t}-5,2 \mathrm{t}+2\rangle$ and perpendicular to the line $\langle\mathrm{t}+$ $\left.\pi, 3 t-e, 10^{100}-2 t\right\rangle$.
8 Find the velocity, speed, and acceleration of the following vector-valued functions:
(a) $\vec{x}(t)=\left\langle t^{3}+9,7 \ln t, e^{-2 t}-2\right\rangle$
(b) $\vec{x}(t)=\langle\sin 3 t,-\cos 3 t, 4 t\rangle$
(c) $\vec{x}(t)=\langle 3 t+6,11-4 t, 12 t+9\rangle$

9 Find the arclength of the following curves:
(a) $\langle\sin 5 \mathrm{t},-12 \mathrm{t},-\cos 5 \mathrm{t}\rangle$, over the interval $0 \leq \mathrm{t} \leq 2$
(b) $\left\langle 3 \mathrm{t}^{2}+8,2 \mathrm{t}^{3}-7,5-3 \mathrm{t}\right\rangle$, over the interval $-1 \leq \mathrm{t} \leq 1$
(c) $\left\langle 3 e^{t}-8 e^{-t}+13,4 e^{t}+5+6 e^{-t}, 23-10 t\right\rangle$, over the interval $0 \leq t \leq 1$

10 Find the minimum speed of the curve $\left\langle t^{3}-15 t, 3 t^{2}-5,3 t-2 t^{3}\right\rangle$.
*11 Four of the eight corners of a cube are $(-1,-1,-1),(1,2,5),(2,7,-6)$, and $(4,10,0)$. Find the coordinates for the center of the cube.
[Hint: Look at the distances between the points. How many different distances can exist between two corners in a cube?]
12 Compute each of the following limits:
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+2 y^{2}}{x^{2}+2 y^{3}}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{5}+y^{5}}$
*(d) $\lim _{(x, y) \rightarrow(1,1)} \frac{x-2 y}{x^{3}-8 y^{3}}$
*13 The vertices of a triangle in the 3rd dimension are at points A, B, and C. Let \vec{u} be the vector from A to B, \vec{v} the vector from B to C, and \vec{w} the vector from C back to A. If $|\vec{u}|=5$ and $\vec{u} \cdot \vec{v}=23$, compute $\vec{u} \cdot \vec{w}$.
[Hint: Use the fact that $\vec{u}+\vec{v}+\vec{w}=\overrightarrow{0}$ to rewrite $\vec{u} \cdot \vec{w}$.]

