Midterm Review! The harder problems are marked with an asterisk (*).

Review Problems

- 1 Use a linear approximation to estimate the following quantities:
 - (a) $(1.99)^3 + (1.02)^3 + (2.02)^3$
 - (b) (arctan(1.04))(arctan(.98))
- 2 Find the distance between the point (1, 2, 3) and the plane 3x 7y + 4z = 0.
- *3 A cylindrical can has its base sitting in the xy-plane. The bottom circle passes through the origin and the opposite point on the top circle lies in the first octant on the plane x+3y+5z =
 9. Compute the largest possible volume for the can.
- 4 Find all values of k such that the function $u(x,y) = x^3 + kxy^2$ satisfies Laplace's equation $u_{xx} + u_{yy} = 0$.
- 5 Identify the critical values of the following functions:
 - (a) $f(x,y) = x^3 + 2y^3 + x^2y 3x^2 3y^2$
 - (b) $f(x,y) = xy + \frac{2}{x} + \frac{4}{y}$
 - (c) $f(x,y) = e^{x}(x^{2} + y^{2})$
- 6 A particle on the surface $f(x, y) = x^2y^2 3xy + x + y$ at (1, 2) heads in the unit direction \vec{u} . If the directional derivative is 0, compute all possible vectors \vec{u} .
- 7 Compute the gradient of f at the following points:
 - (a) $f(x,y) = xy + x^2y^2$ at (-1,3)
 - (b) $f(x, y, z) = x \sin(yz)$ at $(2, \pi, \frac{1}{3})$
 - (c) $f(x, y, z) = e^{xy+3z}$ at (1, 3, -1)
 - (d) $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ at (2, -3, 6)
- 8 Find the directional derivative of f at the point p in the direction \vec{u} :
 - (a) $f(x,y) = 2x^2 4xy + y, p = (2,3), \vec{u} = \langle -4, 3 \rangle$
 - (b) $f(x,y,z) = xy xz + yz, p = (2,3,5), \vec{u} = \langle 1, 8, -4 \rangle$
 - (c) $f(x, y, z) = e^{xy} + e^{xz} + yz$, p = (0, 2, -1), $\vec{u} = \langle 2, -1, 2 \rangle$
- *9 A triangle has its vertices on the circle $x^2 + y^2 = 9$. Find the largest possible area for the triangle.

[**Hint:** The area of a triangle with side-angle-side of a, θ, b is $\frac{1}{2}ab\sin\theta$.]

- 10 Find the direction of maximum increase of the function $f(x, y) = \sqrt{x^2 + 8xy + y^2}$ at the point (3,4).
- 11 The wind speed at the point (x, y) is given by S(x, y) = (x y)(x + 2y 3). A bug crawls along the path $x(t) = 1 + \sqrt{t}$, $y(t) = 1 \sqrt{t} + t$. How fast is the wind speed changing on the bug's path at t = 4?
- 12 Compute each of the following integrals:
 - (a) $\iint 2xy + 2x + y \, dA$, where R is the rectangle $[1, 2] \times [1, 3]$
 - (b) $\iint 3y 4x \, dA$, where R is the region between the curves $y = \frac{x}{3}$ and $x = y^2 4$
 - (c) $\iint \frac{x}{y} \frac{y}{x} dA$, where R is the triangle with vertices (1, 1), (1, 10), and (10, 1)
 - (d) $\iint xe^{y^3} dA$, where R is the region $x \le y \le 1, x \ge 0$
- *13 The ellipsoid $2x^2 + y^2 + 3z^2 = 9$ intersects the plane 3x + 2y + 6z = 1, creating a closed curve. Find the formula for the tangent line to the curve at the point (1, 2, -1).
- *14 Find the radius of the largest circle that can fit inside the closed curve $x^6 + 4y^6 = 1$.
- 15 Find the maximum and minimum values of the function $f(x, y) = 3x^2 2xy + 3y^2 2x 10y$ on the region $x^2 + y^2 \le 9$.
- 16 Evaluate the double integral $\int_0^4 \int_{\sqrt{x}}^2 \cos\left(\frac{x}{y}\right) dy dx$.