Midterm Review! The harder problems are marked with an asterisk (*).

Review Problems

1 Use a linear approximation to estimate the following quantities:
(a) $(1.99)^{3}+(1.02)^{3}+(2.02)^{3}$
(b) $(\arctan (1.04))(\arctan (.98))$

2 Find the distance between the point $(1,2,3)$ and the plane $3 x-7 y+4 z=0$.
*3 A cylindrical can has its base sitting in the $x y$-plane. The bottom circle passes through the origin and the opposite point on the top circle lies in the first octant on the plane $x+3 y+5 z=$ 9. Compute the largest possible volume for the can.

4 Find all values of k such that the function $u(x, y)=x^{3}+k x y^{2}$ satisfies Laplace's equation $u_{x x}+u_{y y}=0$.
5 Identify the critical values of the following functions:
(a) $f(x, y)=x^{3}+2 y^{3}+x^{2} y-3 x^{2}-3 y^{2}$
(b) $f(x, y)=x y+\frac{2}{x}+\frac{4}{y}$
(c) $f(x, y)=e^{x}\left(x^{2}+y^{2}\right)$

6 A particle on the surface $f(x, y)=x^{2} y^{2}-3 x y+x+y$ at $(1,2)$ heads in the unit direction \vec{u}. If the directional derivative is 0 , compute all possible vectors \vec{u}.
7 Compute the gradient of f at the following points:
(a) $f(x, y)=x y+x^{2} y^{2}$ at $(-1,3)$
(b) $f(x, y, z)=x \sin (y z)$ at $\left(2, \pi, \frac{1}{3}\right)$
(c) $f(x, y, z)=e^{x y+3 z}$ at $(1,3,-1)$
(d) $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(2,-3,6)$

8 Find the directional derivative of f at the point p in the direction \vec{u} :
(a) $f(x, y)=2 x^{2}-4 x y+y, p=(2,3), \vec{u}=\langle-4,3\rangle$
(b) $f(x, y, z)=x y-x z+y z, p=(2,3,5), \vec{u}=\langle 1,8,-4\rangle$
(c) $f(x, y, z)=e^{x y}+e^{x z}+y z, p=(0,2,-1), \vec{u}=\langle 2,-1,2\rangle$
*9 A triangle has its vertices on the circle $x^{2}+y^{2}=9$. Find the largest possible area for the triangle.
[Hint: The area of a triangle with side-angle-side of a, θ, b is $\frac{1}{2} a b \sin \theta$.]
10 Find the direction of maximum increase of the function $f(x, y)=\sqrt{x^{2}+8 x y+y^{2}}$ at the point $(3,4)$.
11 The wind speed at the point (x, y) is given by $S(x, y)=(x-y)(x+2 y-3)$. A bug crawls along the path $x(t)=1+\sqrt{t}, y(t)=1-\sqrt{t}+t$. How fast is the wind speed changing on the bug's path at $t=4$?
12 Compute each of the following integrals:
(a) $\iint 2 x y+2 x+y d A$, where R is the rectangle $[1,2] \times[1,3]$
(b) $\iint 3 y-4 x d A$, where R is the region between the curves $y=\frac{x}{3}$ and $x=y^{2}-4$
(c) $\iint \frac{x}{y}-\frac{y}{x} d A$, where R is the triangle with vertices $(1,1),(1,10)$, and $(10,1)$
(d) $\iint x e^{y^{3}} d A$, where R is the region $x \leq y \leq 1, x \geq 0$
*13 The ellipsoid $2 x^{2}+y^{2}+3 z^{2}=9$ intersects the plane $3 x+2 y+6 z=1$, creating a closed curve. Find the formula for the tangent line to the curve at the point $(1,2,-1)$.
*14 Find the radius of the largest circle that can fit inside the closed curve $x^{6}+4 y^{6}=1$.
15 Find the maximum and minimum values of the function $f(x, y)=3 x^{2}-2 x y+3 y^{2}-2 x-10 y$ on the region $x^{2}+y^{2} \leq 9$.
16 Evaluate the double integral $\int_{0}^{4} \int_{\sqrt{x}}^{2} \cos \left(\frac{x}{y}\right) d y d x$.

