Math 142B Homework Assignment 3 Due 11:00pm Thursday, May 9, 2024

- 1. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(t) = \begin{cases} 0 & \text{if } t < 0, \\ t & \text{if } 0 \le t \le 1, \\ 4 & \text{if } t > 1. \end{cases}$
 - (a) Determine the function $F(x) = \int_0^x f(t) dt$.
 - (b) Where is F continuous?
 - (c) Where is F differentiable? Compute F'(x) at the points x where F is differentiable.
- 2. Let f be a continuous function on \mathbb{R} and define $F(x) = \int_{x-1}^{x+1} f(t) dt$ for $x \in \mathbb{R}$. Show that F is differentiable on \mathbb{R} and compute F'.
- 3. Let f be a continuous function on \mathbb{R} and define $G(x) = \int_0^{\sin(x)} f(t) dt$ for $x \in \mathbb{R}$. Show that G is differentiable on \mathbb{R} and compute G'.
- 4. Suppose f is a continuous function on [a, b]. Show that if $\int_a^b f(x)^2 dx = 0$, then f(x) = 0 for all $x \in [a, b]$.
- 5. Show that if f is a continuous real-valued function on [a, b] satisfying $\int_{a}^{b} f(x)g(x) dx = 0$ for every continuous function g on [a, b], then f(x) = 0 for all $x \in [a, b]$.
- 6. (a) Show that

i.
$$\int_{0}^{1} x^{-p} dx = \frac{1}{1-p}$$
 if $0 .
ii. $\int_{0}^{1} x^{-p} dx = +\infty$ if $p > 1$.
(b) Show that $\int_{0}^{\infty} x^{-p} dx = +\infty$ for all $p > 0$.$

7. Compute

(a)
$$\int_0^1 \log(x) dx$$

(b)
$$\int_2^\infty \frac{\log(x)}{x} dx$$

(c)
$$\int_0^\infty \frac{1}{1+x^2} dx$$

8. Prove the following *comparison tests*. Let f and g be continuous functions on (a, b) such that $0 \le f(x) \le g(x)$ for all $x \in (a, b)$ and where a could be $-\infty$ and b could be $+\infty$.

(a) If
$$\int_{a}^{b} g(x) dx < \infty$$
, then $\int_{a}^{b} f(x) dx < \infty$.
(b) If $\int_{a}^{b} f(x) dx = +\infty$, then $\int_{a}^{b} g(x) dx = +\infty$.

(page 2 of 2)

- 9. (a) Using a comparison test, show that $\int_{-\infty}^{\infty} e^{-x^2} dx < \infty$.
 - (b) Show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.

10. Suppose f is continuous on (a, b), where a could be $-\infty$ and b could be $+\infty$. Show that if $\int_{a}^{b} |f(x)| dx < \infty$, then the integral $\int_{a}^{b} f(x) dx$ exists and is finite.