Math 142B Homework Assignment 3

1. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(t)= \begin{cases}0 & \text { if } t<0, \\ t & \text { if } 0 \leq t \leq 1, \\ 4 & \text { if } t>1 .\end{cases}$
(a) Determine the function $F(x)=\int_{0}^{x} f(t) d t$.
(b) Where is F continuous?
(c) Where is F differentiable? Compute $F^{\prime}(x)$ at the points x where F is differentiable.
2. Let f be a continuous function on \mathbb{R} and define $F(x)=\int_{x-1}^{x+1} f(t) d t$ for $x \in \mathbb{R}$.

Show that F is differentiable on \mathbb{R} and compute F^{\prime}.
3. Let f be a continuous function on \mathbb{R} and define $G(x)=\int_{0}^{\sin (x)} f(t) d t$ for $x \in \mathbb{R}$.

Show that G is differentiable on \mathbb{R} and compute G^{\prime}.
4. Suppose f is a continuous function on $[a, b]$. Show that if $\int_{a}^{b} f(x)^{2} d x=0$, then $f(x)=0$ for all $x \in[a, b]$.
5. Show that if f is a continuous real-valued function on $[a, b]$ satisfying $\int_{a}^{b} f(x) g(x) d x=0$ for every continuous function g on $[a, b]$, then $f(x)=0$ for all $x \in[a, b]$.
6. (a) Show that
i. $\int_{0}^{1} x^{-p} d x=\frac{1}{1-p}$ if $0<p<1$.
ii. $\int_{0}^{1} x^{-p} d x=+\infty$ if $p>1$.
(b) Show that $\int_{0}^{\infty} x^{-p} d x=+\infty$ for all $p>0$.
7. Compute
(a) $\int_{0}^{1} \log (x) d x$
(b) $\int_{2}^{\infty} \frac{\log (x)}{x} d x$
(c) $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$
8. Prove the following comparison tests. Let f and g be continuous functions on (a, b) such that $0 \leq f(x) \leq g(x)$ for all $x \in(a, b)$ and where a could be $-\infty$ and b could be $+\infty$.
(a) If $\int_{a}^{b} g(x) d x<\infty$, then $\int_{a}^{b} f(x) d x<\infty$.
(b) If $\int_{a}^{b} f(x) d x=+\infty$, then $\int_{a}^{b} g(x) d x=+\infty$.

(page 2 of 2)

9. (a) Using a comparison test, show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x<\infty$.
(b) Show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.
10. Suppose f is continuous on (a, b), where a could be $-\infty$ and b could be $+\infty$. Show that if $\int_{a}^{b}|f(x)| d x<\infty$, then the integral $\int_{a}^{b} f(x) d x$ exists and is finite.
