
BV FUNCTIONS

JACOB STERBENZ

Abstract. A quick review of BV functions from the point of view of complex Borel measures and the Riesz
representation theorem.

1. BV Functions

We denote by an interval any set I ⊆ R with the property x, y ∈ I and x < z < y implies z ∈ I. We
always exclude the case of a single point I = {x}. For a function F : I → C we define the (possibly infinite)
quantity:

‖F ‖BV (I) = sup
x0<x1<...<xN

N∑
k=1

|F (xk)− F (xk−1)| , where xk ∈ I .

If I = ∪iIi is a disjoint union (of possibly infinitely many terms), then its easy to see this quantity adds:

(1) ‖F ‖BV (I) =
∑
i

‖F ‖BV (Ii) , where I = ∪iIi is a disjoint union .

Note that in the case where I = ∪Ni=1Ii this is immediate from the definition because any partition of
I produces partitions of the Ii and vice versa. In the case of infinite unions a similar reason shows∑N

i=1 ‖F ‖BV (Ii) ≤ ‖F ‖BV (I) for each N which is the main direction to prove in this case.
We say F ∈ BV (I) if ‖F ‖BV (I) < ∞. Note that this becomes a seminorm on the subset of functions

F : I → C for which this finiteness condition holds. One nice thing about BV functions is that they can’t
have many discontinuities, in fact:

Lemma 1.1. Let F ∈ BV (I). Then the set of discontinuities is a countable subset of I. In fact if one
defines:

jump(F ) = {x ∈ I̊
∣∣F (x−) 6= F (x+)} ,

then jump(F ) is at most countably infinite and one has:

(2)
∑

x∈jump(F )

(
|F (x)− F (x−)|+ |F (x)− F (x+)|

)
≤ ‖F ‖BV (I) .

Proof. The key observation here is that if x ∈ I is not an an endpoint then for [x − h, x) ⊆ I where h > 0
one has limh→0+ ‖F ‖BV ([x−h,x)) = 0. This comes by writing [x− 1

k , x) = ∪n≥k[x− 1
n , x−

1
n+1 ) for some k

large enough that [x− 1
k , x) ⊆ I to begin with, and then using (1) which says:

‖F ‖BV ([x− 1
N ,x)) =

∞∑
n=N

‖F ‖BV ([x− 1
n ,x− 1

n+1 ))
= oN (1) ,

thanks to the fact that the entire sum starting at n = k is finite (so it has small tail).
The limit limh→0+ ‖F ‖BV ([x−h,x)) = 0 implies that F (xn) is Cauchy for any xn ↗ x, so F (xn) has some

limit. This also implies that all such limits must be the same because if yn ↗ x the interleaved sequence
{x1, y1, x2, y2, . . .} is also Cauchy. A similar argument shows F (x−) exists as well.

Finally let xi ∈ jump(F ) for i = 1, . . . , N be a finite collection and suppose x1 < . . . < xN . Choosing
ε ≤ 1

2 mini 6=j{|xi − xj |} we have that (xi − ε, xi + ε) are each disjoint (and contained in I for small enough
ε). Then:

N∑
i=1

(
|F (x)− F (xi − ε)|+ |F (x)− F (xi + ε)|

)
≤ ‖F ‖BV (I) .
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Taking the limit as ε→ 0 gives (2) for all finite subsets of jump(F ). This shows jump(F ) must be countable,
and that in fact the sum over all jumps must converge to a value ≤ ‖F ‖BV (I). �

One thing we’ll see in a moment is that jump(F ) contains essential information about F , while the precise
values of F can be irrelevant aside from giving a spuriously large value for ‖F ‖BV (I). This is illustrated by
the example of letting F (x) ≡ c for some constant, except for x at finitely many points x1, . . . xN . In this

case jump(F ) = ∅ even though ‖F ‖BV =
∑N

i=1 |F (xi)| can be quite large. But for all intents and purposes
a function like this should be thought of as a constant (again we’ll make the idea here more precise in a bit).

2. CDF of Radon Measures

The main way to get BV (R) functions is through the following construction: Let µ ∈M(R) be a complex
Borel measure (in particular if µ is nonnegative it is still finite). Also set BV0(R) to be all F ∈ BV (R)
with the property that limx→−∞ F (x) = 0 (note that infinite limits of BV (R) functions always exist by an
argument that is similar to the one in the last section for left and right limits). We define the quantity:

F (x) = µ((−∞, x]) ,

which is sometimes called the right continuous cumulative distribution of µ. The name comes from the fact
that if xn ↘ x then since (−∞, xn] are nested decreasing with intersection (−∞, x] one gets limn F (xn) =
F (x) thanks to continuity of measures for intersections. Thus F (x) = F (x+) for all x. On the other thanks
to continuity of measures for unions one gets F (x−) = µ((−∞, x)) = µ((−∞, x])−µ({x}) = F (x+)−µ({x}).
This leads to:

Proposition 2.1. Let µ ∈M(R) and F (x) its right continuous CDF. Then one has F ∈ BV0(R) and also:

jump(F ) = atoms(µ) ,

where atoms(µ) = {x ∈ R
∣∣ µ({x}) 6= 0}. Moreover one has the identity:

(3) ‖F ‖BV (R) = ‖µ ‖M(R) .

Proof. The statement about the atoms comes from the identity F (x+) − F (x−) = µ({x}) which we just
proved. To get the statement about BV (R) note that for for any partition x0 < x1 < . . . < xN we have:

N∑
i=1

|F (xi)− F (xi−1)| ≤
N∑
i=1

|µ|((xi−1, xi]) ≤ |µ|((x0, xN ]) ≤ |µ|(R) = ‖µ ‖M(R) .

To get the other direction of (3) is just a little more work because we need to use the regularity properties
of Radon measures. Recall that the definition of the total variation of µ is the positive measure defined by:

|µ|(E) = sup
{ N∑

i=1

|µ(Ei)|
∣∣ ∪i Ei ⊆ E is a disjoint union

}
.

For each finite disjoint collection of sets Ei we can find compact and open sets Ki ⊆ Ei with the property
that |µ|(Ei) < |µ(Ki)| + ε2−i−1, and for each of these Ki we can find finitely many disjoint open intervals
Ii,j = (ai,j , bi,j) with Ki ⊆ ∪jIi,j and

∑
j |µ|(Ii,j) < |µ|(Ki) + ε2−i−1.

In fact we can do a little bit better because each Ki is compact, so it must be bounded away from the
right endpoint bi,j of each of these intervals. Using this and monotonicity we can find a disjoint collection
of intervals of the form Ji,j = (ai,j , ci,j ] with both Ki ⊆ ∪jJi,j and

∑
j |µ|(Ji,j) < |µ|(Ki) + ε2−i−1. By the

containments of everything in this construction we have:

µ(Ei) = µ(Ki) + µ(Ei \Ki) = µ(∪jJi,j)− µ(∪jJi,j \Ki) + µ(Ei \Ki) .

Now we also have µ(∪jJi,j) =
∑

j(F (ci,j)− F (ai,j)), so that:

|µ(Ei)| ≤
∑
j

|F (ci,j)− F (ai,j)|+ ε2−i .

Now we are in business because for this collection of Ei and disjoint half closed intervals Ji,j we compute:∑
i

|µ(Ei)| ≤
∑
i,j

|F (ci,j)− F (ai,j)|+ ε ≤ ‖F ‖BV (R) + ε .
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Since the Ei were an arbitrary set of finite disjoint intervals in R we get ‖µ ‖M(R) ≤ ‖F ‖BV (R) as was to
be shown. �

3. Distributional Derivatives of BV Functions

Next we give a Reisz representation version of the equivalence between M(R) and BV0(R). Doing this
will also explain why we don’t care about discontinuities outside jump(F ). Let F ∈ BV (R) (not necessarily
vanishing at −∞ or right continuous, just in BV). From this we can define a linear functional on the vector
space C1

c (R) = {f ∈ Cc(R)
∣∣ f ′ ∈ Cc(R)}:

(4) L(ϕ) = −
∫ ∞
−∞

F (x)ϕ′(x)dx .

Note that this is completely classical as the integral can be defined in the sense of Riemann. What’s
interesting is that L can be extended continuously to the much larger space C0(R) because of the condition
F ∈ BV (R). To see this let ∆hϕ(x) = h−1(ϕ(x + h) − ϕ(x)) be the difference quotient. Then ϕ′ =
limh→0 ∆hϕ, and one has the “integration by parts” formula:

−
∫ ∞
−∞

F∆hϕdx =

∫ ∞
−∞

∆−hFϕdx , h 6= 0 .

Now limh→0 ∆hF can in general be quite singular so we don’t expect to get useful information by looking
that pointwise. But what about its averages against C0(X)? First assuming ϕ is compactly supported we
can discretize the integral and write for a fixed h > 0:

|
∫ ∞
−∞

∆−hFϕdx| ≤
∑
n∈Z

1

h

∫ h(n+1)

hn

|F (x+h)−F (x)| |ϕ(x)|dx ≤ ‖ϕ ‖L∞(R)
∑
n∈Z

sup
x∈[hn,h(n+1)]

|F (x+h)−F (x)| .

On the other hand supx∈[hn,h(n+1)] |F (x+ h)− F (x)| ≤ ‖F ‖BV ([hn,h(n+2)]). Therefore using (1) the second
term can be bounded by: ∑

n∈Z
sup

x∈[hn,h(n+1)]

|F (x+ h)− F (x)| ≤ 2‖F ‖BV (R) .

In other words we have the uniform bound:

|Lh(ϕ)| ≤ 2‖F ‖BV (R)‖ϕ ‖C0(R) , where Lh(ϕ) =

∫ ∞
−∞

∆−hFϕdx .

This shows that not only can we extend to all of C0(R), but also that there holds a uniform bound
‖Lh ‖C0(R)∗ ≤ 2‖F ‖BV (R). By weak-∗ compactness this also means that there exists a subsequence Lhk

⇀ L0

for some L0 ∈ C0(R)∗. But we already know that Lhk
(ϕ) → L(ϕ) where L is defined by (4) above as long

as ϕ ∈ C1
c (R). In fact we can say a little bit more because if hn → 0 is a any sequence (hn 6= 0), then there

is a further weak-∗ convergent subsequence Lhnk
⇀ L. This shows that in fact we have limh→0 Lh ⇀ L for

any sequence of h→ 0. Thus L ∈ C0(R)∗ (after extension) so there must exist some µ ∈M(R) with:

(5)

∫
R
ϕdµ = −

∫ ∞
−∞

F (x)ϕ′(x)dx , for all ϕ ∈ C1
c (R) .

Because of this we write µ = limh→0 ∆hF “weakly in the sense of measures”. The key point here is that the
measure µ captures all the information from the singular limit of ∆hF that could be lost by considering this
limit pointwise.

Its also important to notice something at this point: If we change F on a finite (or even countable) set of
points in such a way that its still in BV (R), then the RHS of formula (5) does not change. Therefore neither
does the LHS. Thus, going from BV (R) ⇒M(R) looses some information, but as we’ll show next this can
only be spurious discontinuities like in the example of the first section.

Theorem 3.1 (Fundamental Theorem of Calculus for BV Functions). Let G ∈ BV (R), and let G′ = µ be
its weak derivative. Let F be the right continuous CDF of µ. Then one has that:

jump(F ) = jump(G) .
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In addition there exists a constant C such that the pointwise identity holds:

(6) G(x) = F (x) + C , for all x /∈ jump(G) ∪ disc(G) .

Moreover the set of discontinuities D = disc(G) of G(x) must be countable and we have a disjoint decompo-
sition D = jump(G) ∪Dspur where G(x−) = G(x+) for all x ∈ Dspur. In particular after redefining G at
countably many points (including jumps) we can have (6) at every point. In other words we can have:

G(x) =

∫
(−∞,x]

dµ+ C , where G′ = µ in the sense of measures ,

that is where the relationship between G and µ is given by (5).

Proof. It is enough to show the two identities:

(7) F (x+)− F (x−) = G(x+)−G(x−) , F (x+) + F (x−) = G(x+) +G(x−)− 2G(−∞) ,

at every point x ∈ R. The first shows that jump(F ) = jump(G), while the second shows that F (x) =
G(x) +G(−∞) at every point where x /∈ jump(F ) and simultaneously G(x−) = G(x) = G(x+). Recall that:

(8)

∫
R
ϕdµ = −

∫ ∞
−∞

G(x)ϕ′(x)dx , for all ϕ ∈ C1
c (R) ,

and F = µ((−∞, x]). Now fix a point x ∈ R and first consider this identity with a sequence of test functions
ϕn(y − x) with the property:

ϕ′n(x) =

{
nψ(nx+ 1) , x ≤ 0;

−nψ(nx− 1) , x > 0 ,

where ψ(x) is a smooth bump function with supp(ψ) ⊆ [−1, 1] and
∫
ψdx = 1. Then φn(0) = 1 for all n and

supp(ϕn) ⊆ [−1/n, 1/n] for all n. In particular ϕn(y − x)→ 1{x}(y) for every y so by DCT:

lim
n

∫
R
ϕn(y − x)dµ(y) =

∫
R
1{x}dµ = µ({x}) = F (x+)− F (x−) .

On the other hand for each n we have:∫ ∞
−∞

G(y)ϕ′n(y − x)dy =

∫ ∞
−∞

G(y + x)ϕ′n(y)dy ,

= n

∫ ∞
−∞

G(y + x)ψ(ny + 1))dy − n
∫ ∞
−∞

G(y + x)ψ(ny − 1))dy ,

=

∫ ∞
−∞

G(
1

n
y + x− 1

n
)ψ(y)dy −

∫ ∞
−∞

G(
1

n
y + x+

1

n
)ψ(y)dy .(9)

Now supp(ψ) ⊆ [−1, 1], so we have:

G(
1

n
y + x± 1

n
)ψ(y) = G(x±)ψ(y) + o(1)ψ(y) ,

where o(1) → 0 as n → ∞. This combined with the fact
∫
ψdx = 1 shows that the limit of (9) is

G(x−)−G(x+). Equating this (with a minus sign) to (3) gives the first identity on line (7).
To prove the second identity on line (7) we use similar calculations with a slightly different sequence of

test functions. Here we set:

ϕ′n(x) =


2nψ(nx+ n2) , x ≤ − 2

n ;

−nψ(nx+ 1) , − 2
n ≤ x ≤ 0;

−nψ(nx− 1) , x > 0 .

The key difference now is twofold. First:

ϕn(y − x) →


2 , x < 0;

1 , x = 0;

0 , x > 0.
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so by DCT we pick up on the LHS of (8) the quantity:

lim
n

∫
R
ϕn(y − x)dµ(y) = 2µ((−∞, x)) + µ({x}) = µ((−∞, x)) + µ((−∞, x]) = F (x−) + F (x+) .

On the other hand the RHS of (8) produces:∫ ∞
−∞

G(x)ϕ′(x)dx =

∫ ∞
−∞

G(
1

n
y+x− 1

n
)ψ(y)dy+

∫ ∞
−∞

G(
1

n
y+x+

1

n
)ψ(y)dy−2

∫ ∞
−∞

G(
1

n
y+x−n)ψ(y)dy ,

which limits to G(x−) +G(x+)− 2G(−∞). �
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