BV FUNCTIONS

JACOB STERBENZ

ABSTRACT. A quick review of BV functions from the point of view of complex Borel measures and the Riesz representation theorem.

1. BV Functions

We denote by an interval any set $I \subseteq \mathbb{R}$ with the property $x, y \in I$ and x < z < y implies $z \in I$. We always exclude the case of a single point $I = \{x\}$. For a function $F : I \to \mathbb{C}$ we define the (possibly infinite) quantity:

$$||F||_{BV(I)} = \sup_{x_0 < x_1 < \dots < x_N} \sum_{k=1}^N |F(x_k) - F(x_{k-1})|, \quad \text{where} \quad x_k \in I.$$

If $I = \bigcup_i I_i$ is a disjoint union (of possibly infinitely many terms), then its easy to see this quantity adds:

(1)
$$||F||_{BV(I)} = \sum_{i} ||F||_{BV(I_i)}$$
, where $I = \bigcup_i I_i$ is a disjoint union.

Note that in the case where $I = \bigcup_{i=1}^{N} I_i$ this is immediate from the definition because any partition of I produces partitions of the I_i and vice versa. In the case of infinite unions a similar reason shows $\sum_{i=1}^{N} \|F\|_{BV(I_i)} \leq \|F\|_{BV(I)}$ for each N which is the main direction to prove in this case. We say $F \in BV(I)$ if $\|F\|_{BV(I)} < \infty$. Note that this becomes a seminorm on the subset of functions

We say $F \in BV(I)$ if $||F||_{BV(I)} < \infty$. Note that this becomes a seminorm on the subset of functions $F : I \to \mathbb{C}$ for which this finiteness condition holds. One nice thing about BV functions is that they can't have many discontinuities, in fact:

Lemma 1.1. Let $F \in BV(I)$. Then the set of discontinuities is a countable subset of I. In fact if one defines:

$$jump(F) = \{x \in \mathring{I} | F(x^{-}) \neq F(x^{+})\},\$$

then jump(F) is at most countably infinite and one has:

(2)
$$\sum_{x \in jump(F)} \left(|F(x) - F(x^{-})| + |F(x) - F(x^{+})| \right) \leq ||F||_{BV(I)}$$

Proof. The key observation here is that if $x \in I$ is not an an endpoint then for $[x - h, x) \subseteq I$ where h > 0 one has $\lim_{h\to 0^+} \|F\|_{BV([x-h,x))} = 0$. This comes by writing $[x - \frac{1}{k}, x) = \bigcup_{n \ge k} [x - \frac{1}{n}, x - \frac{1}{n+1})$ for some k large enough that $[x - \frac{1}{k}, x) \subseteq I$ to begin with, and then using (1) which says:

$$\|F\|_{BV([x-\frac{1}{N},x))} = \sum_{n=N}^{\infty} \|F\|_{BV([x-\frac{1}{n},x-\frac{1}{n+1}))} = o_N(1)$$

thanks to the fact that the entire sum starting at n = k is finite (so it has small tail).

The limit $\lim_{h\to 0^+} ||F||_{BV([x-h,x))} = 0$ implies that $F(x_n)$ is Cauchy for any $x_n \nearrow x$, so $F(x_n)$ has some limit. This also implies that all such limits must be the same because if $y_n \nearrow x$ the interleaved sequence $\{x_1, y_1, x_2, y_2, \ldots\}$ is also Cauchy. A similar argument shows F(x-) exists as well.

Finally let $x_i \in jump(F)$ for i = 1, ..., N be a finite collection and suppose $x_1 < ... < x_N$. Choosing $\epsilon \leq \frac{1}{2} \min_{i \neq j} \{|x_i - x_j|\}$ we have that $(x_i - \epsilon, x_i + \epsilon)$ are each disjoint (and contained in I for small enough ϵ). Then:

$$\sum_{i=1}^{N} \left(|F(x) - F(x_i - \epsilon)| + |F(x) - F(x_i + \epsilon)| \right) \leq ||F||_{BV(I)}$$

Taking the limit as $\epsilon \to 0$ gives (2) for all finite subsets of jump(F). This shows jump(F) must be countable, and that in fact the sum over all jumps must converge to a value $\leq ||F||_{BV(I)}$.

One thing we'll see in a moment is that jump(F) contains essential information about F, while the precise values of F can be irrelevant aside from giving a spuriously large value for $||F||_{BV(I)}$. This is illustrated by the example of letting $F(x) \equiv c$ for some constant, except for x at finitely many points x_1, \ldots, x_N . In this case $jump(F) = \emptyset$ even though $||F||_{BV} = \sum_{i=1}^{N} |F(x_i)|$ can be quite large. But for all intents and purposes a function like this should be thought of as a constant (again we'll make the idea here more precise in a bit).

2. CDF of Radon Measures

The main way to get $BV(\mathbb{R})$ functions is through the following construction: Let $\mu \in \mathcal{M}(\mathbb{R})$ be a complex Borel measure (in particular if μ is nonnegative it is still finite). Also set $BV_0(\mathbb{R})$ to be all $F \in BV(\mathbb{R})$ with the property that $\lim_{x\to-\infty} F(x) = 0$ (note that infinite limits of $BV(\mathbb{R})$ functions always exist by an argument that is similar to the one in the last section for left and right limits). We define the quantity:

$$F(x) = \mu((-\infty, x]) ,$$

which is sometimes called the *right continuous cumulative distribution of* μ . The name comes from the fact that if $x_n \searrow x$ then since $(-\infty, x_n]$ are nested decreasing with intersection $(-\infty, x]$ one gets $\lim_n F(x_n) = F(x)$ thanks to continuity of measures for intersections. Thus $F(x) = F(x^+)$ for all x. On the other thanks to continuity of measures for unions one gets $F(x^-) = \mu((-\infty, x)) = \mu((-\infty, x]) - \mu(\{x\}) = F(x^+) - \mu(\{x\})$. This leads to:

Proposition 2.1. Let $\mu \in \mathcal{M}(\mathbb{R})$ and F(x) its right continuous CDF. Then one has $F \in BV_0(\mathbb{R})$ and also: $jump(F) = atoms(\mu)$,

where $atoms(\mu) = \{x \in \mathbb{R} \mid \mu(\{x\}) \neq 0\}$. Moreover one has the identity:

$$\|F\|_{BV(\mathbb{R})} = \|\mu\|_{\mathcal{M}(\mathbb{R})}.$$

Proof. The statement about the atoms comes from the identity $F(x^+) - F(x^-) = \mu(\{x\})$ which we just proved. To get the statement about $BV(\mathbb{R})$ note that for for any partition $x_0 < x_1 < \ldots < x_N$ we have:

$$\sum_{i=1}^{N} |F(x_i) - F(x_{i-1})| \leq \sum_{i=1}^{N} |\mu|((x_{i-1}, x_i]) \leq |\mu|((x_0, x_N]) \leq |\mu|(\mathbb{R}) = \|\mu\|_{\mathcal{M}(\mathbb{R})}$$

To get the other direction of (3) is just a little more work because we need to use the regularity properties of Radon measures. Recall that the definition of the total variation of μ is the positive measure defined by:

$$|\mu|(E) = \sup \left\{ \sum_{i=1}^{N} |\mu(E_i)| \mid \bigcup_i E_i \subseteq E \text{ is a disjoint union} \right\}.$$

For each finite disjoint collection of sets E_i we can find compact and open sets $K_i \subseteq E_i$ with the property that $|\mu|(E_i) < |\mu(K_i)| + \epsilon 2^{-i-1}$, and for each of these K_i we can find *finitely* many *disjoint* open intervals $I_{i,j} = (a_{i,j}, b_{i,j})$ with $K_i \subseteq \bigcup_j I_{i,j}$ and $\sum_j |\mu|(I_{i,j}) < |\mu|(K_i) + \epsilon 2^{-i-1}$.

In fact we can do a little bit better because each K_i is compact, so it must be bounded away from the right endpoint $b_{i,j}$ of each of these intervals. Using this and monotonicity we can find a disjoint collection of intervals of the form $J_{i,j} = (a_{i,j}, c_{i,j}]$ with both $K_i \subseteq \bigcup_j J_{i,j}$ and $\sum_j |\mu|(J_{i,j}) < |\mu|(K_i) + \epsilon 2^{-i-1}$. By the containments of everything in this construction we have:

$$\mu(E_i) = \mu(K_i) + \mu(E_i \setminus K_i) = \mu(\cup_j J_{i,j}) - \mu(\cup_j J_{i,j} \setminus K_i) + \mu(E_i \setminus K_i)$$

Now we also have $\mu(\bigcup_j J_{i,j}) = \sum_j (F(c_{i,j}) - F(a_{i,j}))$, so that:

$$|\mu(E_i)| \leq \sum_j |F(c_{i,j}) - F(a_{i,j})| + \epsilon 2^{-i}$$

Now we are in business because for this collection of E_i and disjoint half closed intervals $J_{i,j}$ we compute:

$$\sum_{i} |\mu(E_i)| \leq \sum_{i,j} |F(c_{i,j}) - F(a_{i,j})| + \epsilon \leq ||F||_{BV(\mathbb{R})} + \epsilon$$

Since the E_i were an arbitrary set of finite disjoint intervals in \mathbb{R} we get $\|\mu\|_{\mathcal{M}(\mathbb{R})} \leq \|F\|_{BV(\mathbb{R})}$ as was to be shown.

3. DISTRIBUTIONAL DERIVATIVES OF BV FUNCTIONS

Next we give a Reisz representation version of the equivalence between $\mathcal{M}(\mathbb{R})$ and $BV_0(\mathbb{R})$. Doing this will also explain why we don't care about discontinuities outside jump(F). Let $F \in BV(\mathbb{R})$ (not necessarily vanishing at $-\infty$ or right continuous, just in BV). From this we can define a linear functional on the vector space $C_c^1(\mathbb{R}) = \{f \in C_c(\mathbb{R}) \mid f' \in C_c(\mathbb{R})\}$:

(4)
$$L(\varphi) = -\int_{-\infty}^{\infty} F(x)\varphi'(x)dx .$$

Note that this is completely classical as the integral can be defined in the sense of Riemann. What's interesting is that L can be extended continuously to the much larger space $C_0(\mathbb{R})$ because of the condition $F \in BV(\mathbb{R})$. To see this let $\Delta_h \varphi(x) = h^{-1}(\varphi(x+h) - \varphi(x))$ be the difference quotient. Then $\varphi' = \lim_{h \to 0} \Delta_h \varphi$, and one has the "integration by parts" formula:

$$-\int_{-\infty}^{\infty} F\Delta_h \varphi dx = \int_{-\infty}^{\infty} \Delta_{-h} F\varphi dx , \qquad h \neq 0 .$$

Now $\lim_{h\to 0} \Delta_h F$ can in general be quite singular so we don't expect to get useful information by looking that *pointwise*. But what about its averages against $C_0(X)$? First assuming φ is compactly supported we can discretize the integral and write for a fixed h > 0:

$$\left|\int_{-\infty}^{\infty} \Delta_{-h} F\varphi dx\right| \leq \sum_{n \in \mathbb{Z}} \frac{1}{h} \int_{hn}^{h(n+1)} |F(x+h) - F(x)| |\varphi(x)| dx \leq \|\varphi\|_{L^{\infty}(\mathbb{R})} \sum_{n \in \mathbb{Z}} \sup_{x \in [hn, h(n+1)]} |F(x+h) - F(x)| + \frac{1}{2} \sum_{n \in \mathbb{Z}} \frac{1}{h} \int_{hn}^{h(n+1)} |F(x+h) - F(x)| |\varphi(x)| dx \leq \|\varphi\|_{L^{\infty}(\mathbb{R})} \sum_{n \in \mathbb{Z}} \sup_{x \in [hn, h(n+1)]} |F(x+h) - F(x)| dx$$

On the other hand $\sup_{x \in [hn,h(n+1)]} |F(x+h) - F(x)| \le ||F||_{BV([hn,h(n+2)])}$. Therefore using (1) the second term can be bounded by:

$$\sum_{n \in \mathbb{Z}} \sup_{x \in [hn, h(n+1)]} |F(x+h) - F(x)| \le 2 ||F||_{BV(\mathbb{R})}$$

In other words we have the uniform bound:

$$|L_h(\varphi)| \leq 2 \|F\|_{BV(\mathbb{R})} \|\varphi\|_{C_0(\mathbb{R})}, \quad \text{where} \quad L_h(\varphi) = \int_{-\infty}^{\infty} \Delta_{-h} F \varphi dx.$$

This shows that not only can we extend to all of $C_0(\mathbb{R})$, but also that there holds a uniform bound $\|L_h\|_{C_0(\mathbb{R})^*} \leq 2\|F\|_{BV(\mathbb{R})}$. By weak-* compactness this also means that there exists a subsequence $L_{h_k} \rightharpoonup L_0$ for some $L_0 \in C_0(\mathbb{R})^*$. But we already know that $L_{h_k}(\varphi) \rightarrow L(\varphi)$ where L is defined by (4) above as long as $\varphi \in C_c^1(\mathbb{R})$. In fact we can say a little bit more because if $h_n \rightarrow 0$ is a any sequence $(h_n \neq 0)$, then there is a further weak-* convergent subsequence $L_{h_{n_k}} \rightharpoonup L$. This shows that in fact we have $\lim_{h\to 0} L_h \rightharpoonup L$ for any sequence of $h \rightarrow 0$. Thus $L \in C_0(\mathbb{R})^*$ (after extension) so there must exist some $\mu \in \mathcal{M}(\mathbb{R})$ with:

(5)
$$\int_{\mathbb{R}} \varphi d\mu = -\int_{-\infty}^{\infty} F(x)\varphi'(x)dx , \quad \text{for all} \quad \varphi \in C_c^1(\mathbb{R}) .$$

Because of this we write $\mu = \lim_{h\to 0} \Delta_h F$ "weakly in the sense of measures". The key point here is that the measure μ captures all the information from the singular limit of $\Delta_h F$ that could be lost by considering this limit pointwise.

Its also important to notice something at this point: If we change F on a finite (or even countable) set of points in such a way that its still in $BV(\mathbb{R})$, then the RHS of formula (5) does not change. Therefore neither does the LHS. Thus, going from $BV(\mathbb{R}) \Rightarrow \mathcal{M}(\mathbb{R})$ looses some information, but as we'll show next this can only be spurious discontinuities like in the example of the first section.

Theorem 3.1 (Fundamental Theorem of Calculus for BV Functions). Let $G \in BV(\mathbb{R})$, and let $G' = \mu$ be its weak derivative. Let F be the right continuous CDF of μ . Then one has that:

$$jump(F) = jump(G)$$
.

In addition there exists a constant C such that the pointwise identity holds:

(6)
$$G(x) = F(x) + C, \quad \text{for all} \quad x \notin jump(G) \cup disc(G) .$$

Moreover the set of discontinuities D = disc(G) of G(x) must be countable and we have a disjoint decomposition $D = jump(G) \cup D_{spur}$ where $G(x^-) = G(x^+)$ for all $x \in D_{spur}$. In particular after redefining G at countably many points (including jumps) we can have (6) at every point. In other words we can have:

$$G(x) = \int_{(-\infty,x]} d\mu + C$$
, where $G' = \mu$ in the sense of measures,

that is where the relationship between G and μ is given by (5).

Proof. It is enough to show the two identities:

(7)
$$F(x^+) - F(x^-) = G(x^+) - G(x^-)$$
, $F(x^+) + F(x^-) = G(x^+) + G(x^-) - 2G(-\infty)$,

at every point $x \in \mathbb{R}$. The first shows that jump(F) = jump(G), while the second shows that $F(x) = G(x) + G(-\infty)$ at every point where $x \notin jump(F)$ and simultaneously $G(x^-) = G(x) = G(x^+)$. Recall that:

(8)
$$\int_{\mathbb{R}} \varphi d\mu = -\int_{-\infty}^{\infty} G(x)\varphi'(x)dx , \quad \text{for all} \quad \varphi \in C_c^1(\mathbb{R}) ,$$

and $F = \mu((-\infty, x])$. Now fix a point $x \in \mathbb{R}$ and first consider this identity with a sequence of test functions $\varphi_n(y - x)$ with the property:

$$\varphi'_{n}(x) = \begin{cases} n\psi(nx+1) , & x \le 0; \\ -n\psi(nx-1) , & x > 0 , \end{cases}$$

where $\psi(x)$ is a smooth bump function with $supp(\psi) \subseteq [-1,1]$ and $\int \psi dx = 1$. Then $\phi_n(0) = 1$ for all n and $supp(\varphi_n) \subseteq [-1/n, 1/n]$ for all n. In particular $\varphi_n(y-x) \to \mathbf{1}_{\{x\}}(y)$ for every y so by DCT:

$$\lim_{n} \int_{\mathbb{R}} \varphi_{n}(y-x) d\mu(y) = \int_{\mathbb{R}} \mathbf{1}_{\{x\}} d\mu = \mu(\{x\}) = F(x^{+}) - F(x^{-})$$

On the other hand for each n we have:

$$\begin{split} \int_{-\infty}^{\infty} G(y)\varphi_n'(y-x)dy &= \int_{-\infty}^{\infty} G(y+x)\varphi_n'(y)dy ,\\ &= n\int_{-\infty}^{\infty} G(y+x)\psi(ny+1))dy - n\int_{-\infty}^{\infty} G(y+x)\psi(ny-1))dy ,\\ &= \int_{-\infty}^{\infty} G(\frac{1}{n}y+x-\frac{1}{n})\psi(y)dy - \int_{-\infty}^{\infty} G(\frac{1}{n}y+x+\frac{1}{n})\psi(y)dy .\end{split}$$

Now $supp(\psi) \subseteq [-1, 1]$, so we have:

(9)

$$G(\frac{1}{n}y + x \pm \frac{1}{n})\psi(y) \; = \; G(x^{\pm})\psi(y) + o(1)\psi(y) \; ,$$

where $o(1) \to 0$ as $n \to \infty$. This combined with the fact $\int \psi dx = 1$ shows that the limit of (9) is $G(x-) - G(x^+)$. Equating this (with a minus sign) to (3) gives the first identity on line (7).

To prove the second identity on line (7) we use similar calculations with a slightly different sequence of test functions. Here we set:

$$\varphi_n'(x) = \begin{cases} 2n\psi(nx+n^2) , & x \le -\frac{2}{n}; \\ -n\psi(nx+1) , & -\frac{2}{n} \le x \le 0; \\ -n\psi(nx-1) , & x > 0 . \end{cases}$$

The key difference now is twofold. First:

$$\varphi_n(y-x) \to \begin{cases} 2 , & x < 0; \\ 1 , & x = 0; \\ 0 , & x > 0. \end{cases}$$

so by DCT we pick up on the LHS of (8) the quantity:

$$\lim_{n} \int_{\mathbb{R}} \varphi_{n}(y-x) d\mu(y) = 2\mu((-\infty,x)) + \mu(\{x\}) = \mu((-\infty,x)) + \mu((-\infty,x]) = F(x^{-}) + F(x^{+}) .$$

On the other hand the RHS of (8) produces:

$$\int_{-\infty}^{\infty} G(x)\varphi'(x)dx = \int_{-\infty}^{\infty} G(\frac{1}{n}y+x-\frac{1}{n})\psi(y)dy + \int_{-\infty}^{\infty} G(\frac{1}{n}y+x+\frac{1}{n})\psi(y)dy - 2\int_{-\infty}^{\infty} G(\frac{1}{n}y+x-n)\psi(y)dy ,$$
 which limits to $G(x^-) + G(x^+) - 2G(-\infty).$