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Abstract. We give an account of HLS using dyadic methods.

1. Dyadic Rearrangements of Functions

First we discuss some general tools that are useful for proving estimates in Lp spaces. These tools are
often used when inequalities can be had by consideration of rough information on the the bulk “size” of
functions (e.g. estimates that don’t involve delicate cancellation properties).

We let (X,M, µ) be a general measure space, and for an M-measureable function f : X → C we denote
by λf (t) : [0,∞) → [0,∞] its distribution function. Recall that in class (see Section 1.13 of [3]) we showed
that if ν is any Radon measure on [0,∞) then one has the formula:

(1)

∫
X

Φ(|f |)dµ =

∫ ∞
0

λf (t)dν(t) , where Φ(t) = ν
(
[0, t)

)
.

In particular this gives a convenient formula for things like the Lp norms of f when 1 6 p < ∞. Another
useful quantity that is associated with f that can be used as a proxy for λf (and in particular records all
useful bulk “size” information) is the following:

Definition 1.1 (Decreasing Rearrangements). Let (X,M, µ) and f : X → C be given as above. Then for
s ∈ (0,∞) we define the function f∗(s) = inf{t

∣∣λf (t) 6 s} which is called the “decreasing rearrangement”
of f . Note that we define f∗(s) =∞ whenever λf (t) > s for all t ∈ [0,∞).

It is not hard to prove that f∗ is monotone decreasing and right continuous, and hence it is a Borel
measureable function from (0,∞) to [0,∞]. One of the key properties of f∗ is that it is equidistributed with
f , that is:

Lemma 1.2. One has λf∗(t) = λf (t) for all t ∈ [0,∞). In particular for any monotone increasing left
continuous function Φ : [0,∞] → [0,∞] as in formula (1) above one has

∫
X

Φ(|f |)dµ =
∫∞
0

Φ(f∗)ds, where
ds denotes Lebesgue measure.

Proof. To show λf∗(t) = λf (t) it suffices to compute:

(2) {f∗ > t} = (0, λf (t)) ,

with the understanding that {f∗ > t} = ∅ when λf (t) = 0. First, the containment {f∗ > t} ⊆ (0, λf (t)) is
immediate because if s ∈ (0,∞) is such that f∗(s) = inf{t′

∣∣λf (t′) 6 s} > t, we cannot have s ≥ λf (t) or the
infimum would be ≤ t. On the other hand if λf (t) > s then by right continuity of λf one has λf (t+ ε) > s
for some ε > 0. In this case f∗(s) = inf{t′

∣∣λf (t′) 6 s} > t+ ε > t. �

Before continuing, it is useful a few inequalities associated with f∗ and λf which are closely related to
(2). These are:

Lemma 1.3. For the functions f∗ and λf defined above one has the following identities for all finite values:

(3) λf (f∗(s)) 6 s , f∗(λf (t)) 6 t .

In addition whenever 0 < ε < f∗(s), λf (t) <∞ one has:

(4) λf (f∗(s)− ε) > s , f∗(λf (t)− ε) > t .
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Proof. Note that these identities (3) follow immediately from the definition of f∗. Indeed by right continuity
of λf (t) we actually have f∗(s) = min{t

∣∣λf (t) ≤ s}, so λf (f∗(s)) 6 s follows at once. On the other hand
s ≤ λf (t) when s = λf (t), so by definition f∗(s) ≤ t for this value of s which gives f∗(λf (t)) 6 t.

Likewise, the identities on line (4) follow from (2), and we’ll leave further work here to the reader. �

From the previous Lemma and (1) we have:

Proposition 1.4. Let (X,M, µ) be given and f : X → C a M-measureable function. Then for 0 < p <∞
one has:

(5) ‖ f ‖Lp(dµ) = ‖ f∗ ‖Lp(dm) , sup
s>0

s
1
p f∗(s) = sup

t>0
tλf (t)

1
p ,

where m denotes Lebesgue measure on (0,∞).

Proof. We just need to prove the second identity. We’ll use line (4) for this. First, for λf (t) > 0 and ε > 0
sufficiently small we have:

sup
s>0

s
1
p f∗(s) > (λf (t)− ε)

1
p f∗(λf (t)− ε) > (λf (t)− ε)

1
p t

so taking ε → 0 and supping over t with λf (t) > 0 gives sups>0 s
1
p f∗(s) > supt>0 tλf (t)

1
p . The opposite

inequality follows from supt>0 tλf (t)
1
p > (f∗(s) − ε)λf (f∗(s) − ε)

1
p > (f∗(s) − ε)s

1
p for f∗(s) > ε > 0 and

then taking ε→ 0 and sups>0. �

Based on this we construct a function from f which gives its (weak) Lp norms and is somewhat easier to
work with in estimates.

Theorem 1.5. Let (X,M, µ) and f : X → C be a measureable function with λf (t) < ∞ for all t > 0.
Then there exists a collection of constants cn > 0 and disjoint measureable sets En, with the property that
µ(En) 6 2n, cn+1 < |fn(x)| 6 cn, and f = 0 a.e. on the set X \ ∪En. Finally, if we have the following
equivalence:

(6) (
∑
n

cpn2n)
1
p ≈p ‖ f ‖Lp , sup

n
cn2

n
p ≈p ‖ f ‖Lp,∞ ,

where ‖ f ‖Lp,∞ = supt>0 tλf (t)
1
p .

Proof of Theorem 1.5. Define cn = f∗(2n−1), and set En = {x ∈ X
∣∣ cn+1 < |f(x)| ≤ cn}. Then the bounds

of f on En are immediate from definition, and µ(En) ≤ λf (f∗(2n)) ≤ 2n follows from line (3).
Next we show that f = 0 a.e. on the set X \∪En. First note that the condition λf (t) <∞ and continuity

of measures implies the level set identity:

µ({|f | = t}) = m({f∗ = t}) , for all t > 0 ,

which follows by writing µ({|f | = t}) = µ(∩k{t ≥ |f | > t− 1
k}) = limk λf (t− 1

k )− λf (t). In addition to this
we also compute for any s > 0:

f∗(s) ≤ f∗(0+) = lim
k→∞

inf{t
∣∣λf (t) ≤ 1/k} = inf{t

∣∣λf (t) = 0} = ‖ f ‖L∞ , where inf(∅) =∞ .

Thus, if µ({|f | = ‖ f ‖L∞}) = 0 we have cn < ‖ f ‖L∞ for all n and limn→−∞ cn = ‖ f ‖L∞ . And if
µ({|f | = ‖ f ‖L∞}) > 0 we have cn = cn0

for all n ≤ n0. In either case {|f | > 0} ⊆ ∪n{|f | ≤ cn}
away from a set of measure zero. In addition lims→∞ f∗(s) = 0 again by λf (t) < ∞, so we also have
{|f | > 0} = ∪n{cn < |f |}.

To get the identities on line (6) we use (5) and the monotonicity of f∗ which gives:∫ ∞
0

(f∗)p(s)ds ≈
∑
n

(f∗)p(2n)2n , sup
s>0

s
1
p f∗(s) ≈p sup

n
cn2

n
p .

�
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2. The Weak Young’s Inequality and the Hardy-Littlewood-Sobolev Fractional
Integration Theorem

We now use the dyadic setup of the previous section to prove a basic inequality in analysis which often
comes up in applications (PDE, mathematical physics, etc). This is:

Theorem 2.1 (The Hardy-Littlewood-Sobolev estimate). Let 1
p + 1

q + λ
n = 2 where 0 < λ < n and 1 <

p, q < ∞. Then there exists a constant C = C(n, p, λ) such that for f ∈ Lp(Rn) and g ∈ Lq(Rn) one has
f(x)|x− y|−λg(y) ∈ L1(R2n) and:

(7)
∣∣ ∫∫

R2n

f(x)|x− y|−λg(y)dxdy
∣∣ 6 C(n, p, λ)‖ f ‖Lp‖ g ‖Lq .

To prove this one might be tempted to view it as a consequence of Young’s inequality. Indeed, setting
h(x) = |x|−λ the integral becomes

∫∫
f(x)h(x − y)g(y)dxdy, so if h ∈ Lr for r = n

λ we would be done.

However we see ‖h ‖rLr =
∫
|x|−ndx which fails to be integrable (by a log) both as |x| → 0 and |x| → ∞.

Thus, using Young’s inequality directly to prove (7) is out. In spite of this, in a moment we will show that (7)
in fact does follow from a version of Young’s inequality once matters have been localized correctly to dyadic
scales. In the process of doing this we will also show that there is nothing special about the exact form of
the integral (7) and in fact a more general result holds. The key observation in this regard is the fact that

‖ |x|−λ ‖
L
n
λ
,∞ = |B1(n)| λn where |B1(n)| is the volume of the unit ball in Rn and ‖ f ‖rLr,∞ = supt>0 t

rλf (t).

Thus, to prove (7) it suffices to show:

Theorem 2.2 (Weak Young’s Inequality). Let 1
p+ 1

r + 1
q = 2 be such that 1 < p, q, r <∞ and let f ∈ Lp(Rn),

g ∈ Lq(Rn), and h ∈ Lr,∞(Rn). Then f(x)h(x− y)g(y) ∈ L1(R2n) and there exists a constant C = C(p, q)
such that:

(8)
∣∣ ∫∫

R2n

f(x)h(x− y)g(y)dxdy
∣∣ 6 C(p, q)‖h ‖Lr,∞‖ f ‖Lp‖ g ‖Lq .

To show this theorem we will use a version of the usual Young’s inequality adapted to `p = Lp(Z).

Lemma 2.3. Let (an) ∈ `p, (bn) ∈ `q, (cn) ∈ `r where 1
p + 1

q + 1
r > 2. Then one has the estimate:

(9)
∣∣∑
n,m

anbmcn−m
∣∣ 6 ‖ (an) ‖`p‖ (bn) ‖`q‖ (cn) ‖`r .

Proof. Choose p̃ > p, q̃ > q, r̃ > r with 1
p̃ + 1

q̃ + 1
r̃ = 2. By the same calculation used to produce Young’s

inequality on Rn we have LHS(9)6 ‖ (an) ‖`p̃‖ (bn) ‖`q̃‖ (cn) ‖`r̃ . Then (9) follows from the discrete Lp bound
‖ (an) ‖`p̃ 6 ‖ (an) ‖`p , and similarly for (bn) and (cn). �

Proof of (8). The key observation that makes this estimate tick is that for indicator functions of Lebesgue
measureable sets F,G,H the usual version of Young’s inequality is highly inefficient if the sizes of these sets
are widely separated. More specifically by trading one of χF , χG, or χH , for 1 in the convolution we have:∫∫

R2n

χF (x)χG(x− y)χH(y)dxdy 6
|F | |G| |H|

max{|F |, |G|, |H|}
= M(F,G,H)‖χF ‖Lp‖χG ‖Lq‖χH ‖Lr ,

where:

M(F,G,H) 6
(min{|F |, |G|, |H|} ·med{|F |, |G|, |H|}

max{|F |, |G|, |H|}2
)ε

, 0 < ε = min{1− 1

p
, 1− 1

q
, 1− 1

r
} .

Applying this estimate to the functions |f | 6
∑
i aiχFi , |g| 6

∑
j bjχGj , |h| 6

∑
k ckχHk as defined in

Theorem 1.5 we have the estimate:

(10)

∫∫
R2n

|f(x)| |h(x− y)| |g(y)|dxdy 6
∑
i,j,k

2ε(i+j+k−3max{i,j,k})ai2
1
p ibj2

1
q jck2

1
r k .

Using the inequality
∑
k 2ε(i+j+k−3max{i,j,k}) 6 Cε−12−ε|i−j| we directly have:

(11) RHS(10) 6 Cε−1‖ ck2
1
r k ‖`∞

∑
i,j

2−ε|i−j|ai2
1
p ibj2

1
q j .
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Notice that by the condition 1
p + 1

q + 1
r = 2 we automatically have 1

p + 1
q + 1 > 2, so we can apply (9) with

r = 1 and cn = 2−ε|n| to the RHS sum above to yield (for a new C uniform in p, q, r):

RHS(11) 6 Cε−2‖ ai2
1
p i ‖`p‖ bj2

1
q j ‖`q‖ ck2

1
r k ‖`∞ .

The final estimate (8) follows by applying (6) which gives ‖ ai2
1
p i ‖`p 6 C‖ f ‖Lp , ‖ bj2

1
q j ‖`q 6 C‖ g ‖Lq , and

‖ ck2
1
r k ‖`∞ 6 C‖h ‖Lr,∞ . �
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