I. Rellick Compactness
A. Failure of compactness in
$$H^{\epsilon}(\mathbb{R}^{d})$$
.
* Nok that just like in $L^{2}(\mathbb{R}^{d})$, weakly convergent $H^{\epsilon}(\mathbb{R}^{d})$
sequences can beil to be strongly convergent for two
reasons?
a) Convergence to phony in a, $U_{n}(x)=U(x-x_{n})$ where $U_{y_{n}}(\rightarrow w_{1}, u_{n}\in H^{\epsilon})$.
Then $U_{n}\rightarrow on$ $H^{\epsilon}(\mathbb{R}^{d})$.
b) Convergence to infinity in a , $U_{n}(x)=U(x-x_{n})$ where $U_{y_{n}}(\rightarrow w_{1}, u_{n}\in H^{\epsilon})$.
Then $U_{n}\rightarrow on$ $H^{\epsilon}(\mathbb{R}^{d})$.
b) Convergence to infinity in a , $U_{n}(x)=(D)^{r_{1}}(e^{ie_{x}}u_{n}(x))$, $u_{n}eU(\mathbb{R}^{d})$.
Then $\hat{U}_{n}(z)=c_{1}r^{r_{2}}\hat{U}_{n}(z-r_{n})$, $U_{n}\rightarrow on$ $H^{\epsilon}(\mathbb{R}^{d})$ [left on $f \in H^{r_{2}}(\mathbb{R}^{d})$,
so $(f, U_{n})=\int c_{2}r^{r_{2}}S_{1}(z-r_{n})$, $U_{n}\rightarrow on$ $H^{\epsilon}(\mathbb{R}^{d})$ [left on $f \in H^{r_{2}}(\mathbb{R}^{d})$,
 $so (f, U_{n})=\int c_{2}r^{r_{2}}S_{1}(x-r_{n})$, $U_{n}\rightarrow on$ $H^{\epsilon}(\mathbb{R}^{d})$.
B. Rellicits Then
 $\frac{1}{2}$ Now prove the above examples are the only obstruction:
Then: $U_{n}\rightarrow U_{n}$ in $H^{s}(\mathbb{R}^{d})$. Then for all gets and $\chi \in S(\mathbb{R}^{d})$
one has $\chi U_{n}\rightarrow \chi U_{n}$ in $H^{s}(\mathbb{R}^{d})$.
 \underline{re}_{2} : Uit $U_{n}\rightarrow U_{n}$ in $H^{s}(\mathbb{R}^{d})$, and $\Sigma cec(\mathbb{R}^{d}, Then $U_{n}\rightarrow U_{n}$ is $L^{2}(\Omega)$, because
we can table $\chi \equiv d$ in \mathbb{R} .
 \underline{re}_{2}^{s} First show that for $u \in H^{s}$ and $\chi \in S(\mathbb{R}^{d})$
that $U_{1}\chi u |_{H^{s}} \leq C_{1} \otimes U_{1}W_{1}$, with $L^{s}\Sigma^{s}(i(r)+L^{2}, \dots)$
 $The $\hat{\chi}_{n}(z) = \hat{\Sigma}(i(r_{n})\hat{U}_{1})$ dy . Then use
 $L^{s}v^{s}(c_{1}c_{1}r_{2}v^{s}(n_{1})\hat{U}_{1}$ dy . Then use
 $L^{s}v^{s}(c_{2}c_{1}c_{1}r_{2}v^{s}(n_{1})\hat{V}_{1}$ where $Sign$, and $L^{s}v^{s}(c_{1}(x+r_{2}v^{s})$ when $s_{1}c_{0}$.$$

In either case we conclude Via Young's meguality and (E) \$1 \$2(E) E L?. In light of the previous estimate, the principle of uniform boundedness and 11 LEST în 11 L2 (1212R) ECRt-S 11 UII HS for tis and R-> co, we only need to prove Un-o in HS implies Il x+ in Il 2 (12152) → 0, for x ∈ S(Rd). In fact we claim xxm -> 0 m (* (1912R) all K. This is because xxm -> 0 pointing, ond in addition $\partial_1^4 (\hat{\chi} + u_n) = \partial_1^4 \hat{\chi} + u_n$, and $|\int \partial_2^4 \hat{\chi}(1-n) u_n(n) dn |$ < 11 < 11 5 2 2 2 (1-1) 11 22 (dr) · 11 NA 11 HS (Rd) < C (1, d, X) / 1 NA 11 HS (Rd) where C locally bounded in 2.