- I. Dual of C.(X).
- A. Linear functionals on Co(X).

Defn: let X be a LCH space. Set Co(X) SB(X) to be the closure of Cc(X)

with respect to the uniform norm 11 fills = sup 1 fix11. This is the set of all

continuous Functions on X which "Vanish at infinity".

(emma: FECo(X) is f raturds to FEC(X#) via F(xx)=0. Co(X) with norm Il·Ily 2 a Banach space.

Lemma: A PLF on X extends to a CLF on Co(X) iff its Radon measure is finite,

and the happens it 3 Cro s.t. II(f) (CII film all ft Ce(X).

pf: Smee h(X) = sof[14] | Fec. (x), of \$1] = sof[1[4]] | fec. (x), 11411, \$1] we get

[IIF] & cliffly if p finite. If I Hype is Finite, then deady it estude to Co(X).

On the other hand if I: Co(x) > C is a CLF iff |I(f) / C(1 filly all ft (o(x) by density.

(orollong: Let LE (Co(x)) be positive in the surse that LIAI, o all Arro. Then LIAI= Sy & dyn

for a unique finite Radon mousure pr.

Now we extend this result to all of (Co(X)) H.

B. Real Linear Functionals

Proposition (Jordan decomp For CLF): Let LE Co(X,R) the a real linear functional. Then

there exists positive linear functionals Lt & ColX, R! such that L=L+-L.

pt: First, for fe Co(X) and fro we define L+14) = sup{L1g) | ge Co(X) and O < g < f}.

- Let C=11 LII Court than $L(g) \leq C ||g||_{\alpha} \leq C ||f||_{\alpha}$ all $a \leq g \leq f$ in Co(X). Thus $a \leq L^{+}(f) \leq C ||f||_{\alpha}$.
- North we with to show 1t is linear on Co(X, So, or). If coo then oggict to ogigg f

So
$$\lfloor t^{i}(eF) = sup \left\{ L(g) \right\} o_{\xi} o_{\xi} (eF) = sup \left\{ cL(e^{i}g) \right\} o_{\xi} (e^{i}g) \leq 1 \\ \leq c^{i}g) \leq F_{i}(F_{i}) \\ Also if f_{i}, h_{i}, \eta_{i}, 0 \quad \forall m \quad 0 \leq g_{i} \leq F_{i}, m_{i} \quad 0 \leq g_{i} \leq F_{i}, f_{i} \\ So \quad L^{i}(F_{i}, h_{i}) = sup \left\{ L(g) \right\} o_{\xi} g \leq F_{i} + h_{i}^{2} \right\}, sup \left\{ L(g_{i}+g_{i}) \right\} o_{\xi} g_{i} \leq F_{i}, f_{i} \\ Also, if $0 \leq g \leq F_{i}, h_{i} \quad \text{thm} \quad g = g_{i}, g_{i} \quad \text{uhe} \quad g_{i} = nm \{f_{i}, g_{i}^{2}\} \quad \text{and} \quad 0 \leq g_{i} \leq F_{i} \quad g_{i} \leq g_{i} \\ and \quad g \leq g_{i}, h_{i}, s \quad 0 \leq g_{i} \leq F_{i} \quad The \quad sup \left[L(g) \right] o_{\xi} \leq g \leq h_{i} \leq f_{i} \leq g_{i} \\ = L^{i}(F_{i}) + L^{i}(h_{i}) = o_{i} \leq f_{i} \\ = L^{i}(F_{i}) + L^{i}(h_{i}) = o_{i} \leq f_{i} \\ = L^{i}(F_{i}) + L^{i}(h_{i}) = o_{i} \leq f_{i} \\ = L^{i}(F_{i}) + L^{i}(h_{i}) = o_{i} \leq f_{i} \\ = h_{i} \quad sup \left[L^{i}(F_{i}) - L^{i}(F_{i}) - L^{i}(F_{i}) \\ deFined \quad because if \quad F = F_{i} - F_{i} \quad uith \quad \widetilde{F}_{i}, \widetilde{F}_{i} > o \quad thm \quad \widetilde{F}_{i} + h_{i}^{2} = F_{i} + \widetilde{F}_{i} > o \quad so \\ L^{i}(F_{i}) + L^{i}(h_{i}) = L^{i}(h_{i}) + L^{i}(F_{i}) \\ = h_{i} \quad the \quad f_{i}, g_{i} > 0 \quad the \quad g_{i} \quad h_{i} = f_{i} = f_{i} \\ sup \quad L^{i}(F_{i}) + L^{i}(h_{i}) = L^{i}(F_{i}) + L^{i}(F_{i}) \\ = t^{i}(F_{i}) + L^{i}(F_{i}) + L^{i}(F_{i}) \\ = h_{i} \quad f_{i} = f_{i} + f_{i} \quad f_{i} \quad f_{i} = g_{i} - g_{i} \quad uith \quad F_{i}, g_{i} > 0 \quad thm \quad F_{i} + g_{i}^{2} = (F_{i} + g_{i}) - (F_{i} + g_{i}) \\ sup \quad L^{i}(F_{i}) = L^{i}(F_{i}) + L^{i}(F_{i}) \\ = t^{i}(F_{i}) \\ = t^{i}(F_{i}) + t^{i}(F_{i}) \\ = t^{i}(F_{i$$$

Corollary: Let LE Co(X,R)4 be a real Inear Functional, then 3 finite (positive) Radon

C. Complexe Radon Measures <u>Defn</u>: A finite real "signed Radon measure" on a LCH space X is a signed Borel measure $\mu = \mu t - \mu^{-}$ where μt are finite Radon measures. A "complex Radon measure" is a Borel Measure $\mu = \mu re t i \mu_{in}$ where Mre & Min one finite signed Radon measures.

Recall that given a complex measure space (X, B, μ) (say X LCH, B is Bond sets, μ Radon) there is a unique positive finite measure $|\mu|$ such that $d\mu = e^{i\Theta} d|\mu|$ where $\Theta: X \rightarrow iR$ is some measurable (Borel) function $(|\mu| i + the total variation of <math>\mu$). The measure $|\mu|$ can be specified by the criteria that $|\mu|(E) = \sup\{|S_E^{\pm}d\mu| \mid o\{i\}| \leq 1 \mod\}$ (see problem #21 in Ch.3). One has the triangle ineguality $|\mu+\nu| \leq |\mu|+|\nu|$, and $|\lambda| = |\lambda| \cdot |\mu|$ For any two such measures μ, ν and $\lambda \in C$.

Defn: Let X be a LCH. We denote by M(X) the set of all complex Redon measures on X. We set || M || = | M | (X) For M (M).

Lemma: The pair (M(X), 11:11) is a normed vector space which is closed under $\mu \mapsto 1\mu l$. <u>pe:</u> NVS part Clear From $\mu \in M(X) \Longrightarrow \mu = \mu_{re}^{+} - \mu_{re}^{-} + i \left[\mu_{lm}^{+} - \mu_{lm}^{-} \right] \quad \mu_{re}^{+}, \mu_{lm}^{+} all Redon, and$ $the triangle inequality | <math>\mu + v | \leq | \mu | + | v |$, once we can prove that $\mu_{l,l} + \mu_{re} \in M(X)$ and positive $\Longrightarrow \mu_{l,l} + \mu_{lm} \in M(X)$. For the second part if $\mu \in M(X)$ then $|\mu| \leq \mu_{re}^{+} + \mu_{lm}^{+} + \mu_{lm}^{+}$. Thus, the main thing we need to prove is the following:

Limma (Regularity Criterian): Let
$$\mu$$
 be a complex Borel Measure on a LCH space.
Then μ is a Radon Measure iff For each Borel set $E \subseteq X$ and Ero there exists
 $K \subseteq E \subseteq V$, K compared $X V$ open, with $|\mu|(V \setminus k) \land E$.
 $PF: If \mu$ is Radon than $\mu = \mu_1 - \mu_2 + i(\mu_2 - \mu_4)$ where μ_3 are σ -finite Radon so 3
 $K \subseteq E \subseteq V_3$, F_3 compared and V_i open with $\mu_i(V_i \setminus k_i) \land S_{i4}$. Setting $K = \bigcup_{i=1}^{4} \mu_i(V_i \setminus k_i) < E$.
 $V = \prod_{i=1}^{4} V_i$ we have $V \setminus K \subseteq V_i \setminus k_i$ and i so $|\mu|(V \setminus k) < \prod_{i=1}^{4} \mu_i(V_i \setminus k_i) < E$.

For the other direction suppose $|\mu|(V|K) \land \varepsilon$, then let $\mu = \mu_{re}^{+} - \mu_{re}^{-} + i(\mu_{im}^{+} - \mu_{im}^{-})$, where μ_{re}^{\pm} is the Jordan decomp of μ_{re} , and similarly for μ_{im}^{\pm} . Then $\mu_{re}^{\pm} \leq |\mu_{re}| \leq |\mu|$ and $\mu_{im}^{\pm} \leq |\mu|$ as well. Thus $\mu_{re}^{\pm}(V|K) \land \varepsilon$ etc. so $\mu_{re}^{\pm} \neq \mu_{rm}^{\pm}$ are inner \$\exploredowler regular.

D. Complex Linear Functionals on Co(X)
By taking real and imaginary parts we have
$$C_0(X, \varepsilon) = C_0(X, \mathbb{R}) \oplus i C_0(X, \mathbb{R})$$
,
and any $L \in C_0(X, \varepsilon)^{X}$ is determined by $L|_{C_0(X,\mathbb{R})}$. Also, $L^{(\varepsilon)} = \Omega_{\varepsilon}(L(\mathbb{A}))$, $f \in C_0(X,\mathbb{R})$
and $L^{(M)} = Im(L(\mathbb{A}))$ are real linear functionals. In addition $\|L^{(\varepsilon)}\|_{C_0(X,\mathbb{R})^{Y}} \leq \|L\|_{C_0(X,\varepsilon)^{Y}}$
and similarly for $L^{(M)}$, and of course $L = L^{(\varepsilon)} + i L^{(M)}$. Thus, using the material
above we have:

pE: We have already shown the rastrice of
$$\mu$$
. If we can show the Bometry identity
uniqueness Follows directly as well. $|L(f)| = |S_x f d\mu| \leq S_x |f| d|\mu| \leq ||f||_{L^2} ||\mu||_{M(X)} ||f||_{L^2}$.
Thus $||L||_{C^0(X)^{\frac{1}{2}}} \leq ||\mu||_{M(X)}$. On the other hand $||\mu||_{M(X)} = \sup \{|S_x f d\mu| \mid o \leq |f| \leq ||mrasurdul]$.
If $|S_x f d\mu| > ||\mu||_{M(Y)} = \frac{e}{2}$, $o \leq |f| \leq ||, by ||usurls Then 3 & lec Co(X) with $o \leq |Y| \leq ||u||_{L^2}$
and $||\mu|| \{|xeX||\mu||_{H(Y)} = \frac{f}{2}$, $o \leq |f| \leq ||, by ||usurls Then 3 & lec Co(X) with $o \leq |Y| \leq ||u||_{C^0(X)^{\frac{1}{2}}} + \frac{e}{2}$.
This gives $||L||_{C^0(X)^{\frac{1}{2}}} > ||\mu||_{M(Y)} = e$ all ero so we are done.$$

E. Weak compactness, L', etc.

Here is one of the main uses for the material thus for: Defin: Recall that the weakt topology on M(X) is given by Ma-M iff Sxfdha-Sxfdu all ffG(X). We also call Ma-Ju "Vague convergence".

Recall From the Bonoch-Alougiu Thins we have: 1) IF Matern(X) is a net with [IMallinix] & C then Max & for some subrat Max. 3) IF Co(X) is separable, then any bounded sequence II Mn II mix] & C has a convergent Subsequence Max & For example this happens on IRⁿ.

Recall that L'(dyn) is rarely reflexive. This makes it difficult to use weak convergence orguments. However, one does have:

Lemma: Let X be a LCH space and
$$\mu$$
 a positive (ad nec Finite) Radon pressure. Then
if $f \in L'(d\mu)$ the pressure $dv = f d\mu$ is in $M(X)$. Moreover the map
 $L'(d\mu) \sqcup M(X)$ is an isometric embedding.
pf: The Fact that v is Radon follows from density of $C_{c}(X)$ in $L'(d\mu)$. This implies
we can find a compart subset $K \subseteq X$ with $\sum_{K \in V} |f| d\mu \leq V_{L}$. The if $E \subseteq X$ isomet
we can find a compart subset $K \subseteq Y$ with $\sum_{K \in V} |f| d\mu \leq V_{L}$. The if $E \subseteq X$ isomet
we can find $F \subseteq Enk \subseteq V$ with F compart V open if $\mu(V) \in J \in S_{V}$ by the
G.C. condition we can find δ so small that $\sum_{V \in V} |f| d\mu \leq S/2$ as well. Who is $\delta < 5/2$,
so if $V = k^{e} UV$ we get $|U|(U \setminus F) < \Sigma$.
Finally, we compute that $\sum_{V \in V} |f| d\mu = S_{V} d|v| = ||V||_{M(V)}$.

Corollory: Let X be a LCH space with Co(X) separable. Then if in is any positive (not nee Finile) Radon measure, and fine L'(du) with 11fn 111, SC, 3 MEM(X) and Fink-In in the surse of measures.