I. $F T$ of $\frac{1}{x^{\text {I Te }}}$.

* Now compute $\hat{f}(\xi)$ where $f(x)=\frac{1}{x+i t}$.
$\hat{f}(\varepsilon)=\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{-i x \varepsilon} \frac{d x}{x+i \epsilon}, \quad \varepsilon \neq 0$. Two cases: $\varepsilon>0, \varepsilon<0$.
* $\varepsilon<0 \underset{\Omega}{\Psi_{\Gamma} \rightarrow d_{R}^{R}} \int_{\Gamma} e^{-i s z} \frac{d z}{z+{ }^{\prime} G} \equiv 0$. One also checks side and bop contours go to zero as $R \rightarrow \infty \quad z= \pm R+i t$, os $\leq: R$ and

$$
z=x+i R, \quad-R \leq x \leqslant R
$$

Thus $\hat{f}(\varepsilon) \equiv 0$ all $\varepsilon<0$.

* Now let $z>0$, then $\Gamma ~ \int_{\Gamma} e^{-i \varepsilon z} \frac{d z}{z i t}=\frac{2 \pi}{i}\left(\frac{1}{2 \pi} \int_{\Gamma} e^{-i s z} \frac{d z}{z-(-i t)}\right)$ $=-2 \pi i e^{-\epsilon \xi}$. Thus

$$
\hat{f}(\varepsilon)=-2 \pi i H(\varepsilon) e^{-\epsilon \varepsilon}, H(1)= \begin{cases}0 & , \varepsilon<0 \\ 1 & , \varepsilon>0 .\end{cases}
$$

* As an exorcize le b invert: $c \int_{-\infty}^{\infty} \hat{f}(\varepsilon) e^{i x-z} d \xi=-2 \pi i c \int_{0}^{\infty} e^{(-\epsilon t i x) \varepsilon} d \varepsilon$

$$
=2 \pi i c \frac{1}{-\epsilon+i x}=\frac{2 \pi c}{x+i \epsilon} .
$$

Thus $c=\frac{1}{2 \pi}$ as before.

* A smiler calculation using $\hat{F}=\hat{F} \bar{f}$ shows $g(x)=\frac{1}{x-r t}=\bar{f}(x), H(-\varepsilon)=1-H(\varepsilon)$

$$
\hat{g}(\xi)=2 \pi i(1-H(\varepsilon)) e^{t \varepsilon} .
$$

II. Limits as $\in \rightarrow 0$.

* There formulas do show $\frac{1}{x \pm i t}$ have good weak limits as $\epsilon \rightarrow 0$, call then $\frac{1}{x \pm i 0}$. Then $\frac{1}{2 \pi i} \cdot \frac{1}{x-i 0}=(1-H(\varepsilon)), \frac{1}{-\frac{1}{2 \pi i} \frac{1}{x+r 0}}=H(\varepsilon)$.
+ Becaver of this re set the forcoulas $\frac{1}{2 \pi i}\left(\frac{1}{x-10}+\frac{1}{x+i 0}\right)=\delta_{0}$
* Also $\frac{1}{2 \pi}\left(\frac{1}{x+10}+\frac{1}{x-i 0}\right)=\frac{1}{i}(2 H(4)-1)$

In x th3 distributin B giran by $\lim _{G \rightarrow 0} \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{1}{x+6 \epsilon}+\frac{1}{x-i t}\right) f(x) d x$

$$
\begin{aligned}
=\lim _{\epsilon \rightarrow 0} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x}{x^{2}+\epsilon^{2}} f(a) d x & =\lim _{\in \downarrow 0} \frac{1}{\pi} \int_{|x| x \mid, \epsilon}^{\infty} \frac{f(x)}{x} d x, \quad f \in S(\mathbb{R}) . \\
& =\text { P.V. } \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{x} f(x) d x .
\end{aligned}
$$

