I. FT of
$$\frac{1}{2876}$$
.
* Now compute $\hat{P}(s)$ where $f(x) = \frac{1}{2846}$.
 $\hat{F}(s) = A_{m} \int_{R}^{R} \sum_{z \neq z} e^{iss} \frac{dx}{z + is}$, $s \neq 0$. Two costs $: \frac{1}{2} \times 0$, $\frac{1}{2} \times 0$.
 $R \to -R \int_{R}^{R} \sum_{z \neq z} e^{iss} \frac{dx}{z + is} = 0$. One also checks side and
top contains so to the two as $R \to \infty$ $Z = \frac{1}{2}R + it$, $o_{1} + i_{0}$, $o_{1} + i_{0}$
 $z = x + iR$, $-x_{1} = c_{1} + c_{1}$.
 $Thus \hat{f}(s) = 0$ off $\frac{1}{2} \times 0$.
 $Thus \hat{f}(s) = 0$ off $\frac{1}{2} \times 0$.
 $Thus \hat{f}(s) = -i_{m}; H(s) e^{\frac{1}{2}s}$, $H(n) = \begin{bmatrix} 0 & 1526 \\ 1 & 150 \end{bmatrix}$.
 $\hat{f}(s) = -i_{m}; H(s) e^{\frac{1}{2}s}$, $H(n) = \begin{bmatrix} 0 & 1526 \\ 1 & 150 \end{bmatrix}$.
 $\frac{1}{2}R(s) = -i_{m}; H(s) e^{\frac{1}{2}s}$, $H(n) = \begin{bmatrix} 0 & 1526 \\ 1 & 150 \end{bmatrix}$.
 $\frac{1}{2}R(s) = -i_{m}; H(s) e^{\frac{1}{2}s}$, $H(n) = \begin{bmatrix} 0 & 1526 \\ 1 & 150 \end{bmatrix}$.
 $\frac{1}{2}R(s) = -i_{m}; H(s) e^{\frac{1}{2}s}$, $H(n) = \begin{bmatrix} 0 & 1526 \\ 1 & 150 \end{bmatrix}$.
 $\frac{1}{2}R(s) = -i_{m}; H(s) e^{\frac{1}{2}s}$, $H(n) = \begin{bmatrix} 0 & 1526 \\ 1 & 150 \end{bmatrix}$.
 $\frac{1}{2}R(s) = -i_{m}; H(s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = -i_{m}; H(s) e^{\frac{1}{2}s}$, $H(n) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2}R(s) = -i_{m}; c \int_{0}^{\infty} \frac{1}{2}e^{-i_{m}s} ds$.
 $\frac{1}{2}R(s) = -i_{m}; H(s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e^{\frac{1}{2}s}$.
 $\frac{1}{2}R(s) = i_{m}; (1 - i_{m}; s) e$

-

+ Because of this we get the formulas
$$\frac{1}{2\pi}\left(\frac{1}{2r-10}+\frac{1}{2r+10}\right)=5$$

* Also
$$\frac{1}{2\pi} \left(\frac{1}{2\pi \kappa_0} + \frac{1}{2\pi l_0} \right) = \frac{1}{2} \left(2H(6) - l \right)$$

In x this distribution B given by $\lim_{k \to 0} \frac{1}{2\pi} \int_{0}^{\infty} \left(\frac{1}{2\pi \kappa_0} + \frac{1}{2\pi l_0} \right) \frac{1}{2\pi} \right)$
 $= \lim_{k \to 0} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{2\pi k_0 \pi} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2\pi k_0} \frac{1}{2\pi \kappa_0} + \frac{1}{2\pi k_0} \int_{0}^{\infty} \frac{1}{2\pi k_0} \frac{1}{2\pi \kappa_0} \frac{1}{$