MATH 240C HOMEWORK 4

Important: Please answer each of these questions on a separate sheet(s) of paper. Also, put your name and section number on each sheet. You will then upload your final solutions GradeScope as explained on the class webpage.

Problem # 1

Consider the metric space $C = \prod_{n=1}^{\infty} \{0, 2\}$ with the distance function $d(x, y) = \sum_{n} 2^{-n} |x_n - y_n|$ where $x = (x_1, x_2, \ldots)$ with $x_n \in \{0, 2\}$ and similarly for y.

- a) Show that C is compact, and in fact homeomorphic to the standard Cantor set under the mapping $\Phi(x) = \sum_{n} x_n 3^{-n}$.
- b) On \mathcal{C} consider the sequence of Borel probability measures:

$$\mu_n = 2^{-n} \sum_{k=1}^{2^n} \delta_{k,n} ,$$

where $\delta_{k,n}$ are point masses supported on (some enumeration of) each of the 2^n points of the form $x = (x_1, \ldots, x_n, 0, \ldots)$ (i.e. the points where every coordinate $x_k = 0$ for k > n). Prove that $\mu_n \rightharpoonup \mu$ to a Borel probability measure μ on \mathcal{C} .

- c) Prove that the measure μ from the last part is exactly the Cantor Lebesgue measure (see page 39 of the text) when C is realized as its image in [0, 1] under the map Φ above.
- d) Now consider the map $\Psi : \mathcal{C} \to [0,1]$ given by $\Psi(x) = \sum_n x_n 2^{-n-1}$. Prove that Ψ is a continuous surjection and that the standard Lebesgue measure m on [0,1] is exactly the push forward of μ under Ψ . (Recall that this means $\int_0^1 f dm = \int_{\mathcal{C}} f \circ \Psi d\mu$ for every $f \in C([0,1])$).

Problem # 2

- a) Construct a continuous Radon measure μ on [0, 1] such that $\mu \perp m$ where m is the standard Lebesgue measure and $\mu([a, b]) \neq 0$ for all $0 \leq a < b \leq 1$ (a continuous measure on an interval is one such that its CDF is continuous, or equivalently one such that the measure of any single point is zero).
- b) Construct a continuous function $f : [0,1] \to \mathbb{R}$ which is strictly monotone, i.e. f(x) < f(y) for all $0 \le x < y \le 1$, and such that its pointwise derivative f' is such that f'(x) = 0 for Lebesgue a.e. point $x \in (0,1)$. (Recall that a monotone function is automatically pointwise differentiable a.e. with respect to Lebesgue measure.)

Problem #3

Let $F \in BV(\mathbb{R})$, and let $\mu = F'$ be is derivative in the sense of distributions.

- a) Let $\varphi_{\epsilon}(x) = \epsilon^{-1}\varphi(\epsilon^{-1}x)$ for $\varphi \in C_{comp}^{\infty}(\mathbb{R})$ be a standard mollifier (i.e. $\int \varphi dx = 1$). Show that the regularizations $F_{\epsilon} = \varphi_{\epsilon} * F$ are such that $\|F_{\epsilon}\|_{BV(\mathbb{R})} \leq \|F\|_{BV(\mathbb{R})}$ and $F_{\epsilon} \to F$ a.e. with respect to Lebesgue measure (assume $\varphi \geq 0$ here or get a constant C in the estimate).
- b) Prove that the regularized measures $d\mu_{\epsilon} = F'_{\epsilon} dm$ converge weakly in the sense of measures to $d\mu$.
- c) Prove that the regularizations F_{ϵ} converge to F strongly in the $BV(\mathbb{R})$ norm iff μ is absolutely continuous with respect to Lebesgue measure (for this assume F is its right continuous normalization).
- d) Show that the set of functions $C^{\infty}_{comp}(\mathbb{R})$ is weakly dense in $\mathcal{M}(\mathbb{R})$ with the identification $\varphi \mapsto \varphi dm$.
- e) Show that the set of finitely supported measures $\mathcal{F} = \{\mu \in \mathcal{M}(\mathbb{R}) \mid \mu = \sum_{k=1}^{N} c_k \delta_{x_k}\}$ is weakly dense in $\mathcal{M}(\mathbb{R})$. (Hint: Use the previous part and Riemann sums.)
- f) Show that $\mathcal{M}(\mathbb{R}) = \mathcal{A} \oplus \mathcal{S} \oplus L^1(dm)$ where $\mathcal{A} \perp \mathcal{S} \perp L^1(dm)$, and where \mathcal{A} is the norm closure of the set \mathcal{F} defined above, $L^1(dm)$ is the norm closure of $C^{\infty}_{comp}(\mathbb{R})$ with the identification $\varphi \mapsto \varphi dm$, and where the remaining portion \mathcal{S} is the set of "singular continuous measures" which is by definition the set of

complex Borel measures with the property that $\mu \perp m$ and such that $F(x) = \mu((-\infty, x])$ is continuous (for example S contains the measures from Problems #2 and #3 above).

PROBLEM # 4

Let $f_n \in L^p(\mathbb{R}^d)$ and let $\varphi_{\epsilon}(x) = \epsilon^{-d}\varphi(\epsilon^{-1}x)$ for $\varphi \in C^{\infty}_{comp}(\mathbb{R}^d)$ be a standard mollifier. Suppose that $f_n \rightharpoonup f$ weakly in $L^p(\mathbb{R}^d)$ (assume here $1 \leq p < \infty$). For each fixed $\epsilon > 0$ prove that the sequence of mollifications $\varphi_{\epsilon} * f_n \rightarrow \varphi_{\epsilon} * f$ strongly in $C^k(\Omega)$ for all $k \in \mathbb{N}$ and $\Omega \subset \mathbb{R}^d$.

Problem # 5

Recall that for $0 a function f is said to be in <math>L^{p,\infty}(d\mu)$ if $\lambda_f(t) = \mu(\{|f| > t\})$ is such that:

$$\sup_{t>0} t^p \lambda_f(t) < \infty .$$

a) Assume that μ is σ -finite. Show that if 1 then one has:

$$\sup_{t>0} t\lambda_f^{\frac{1}{p}}(t) \leq \sup_{0<\mu(E)<\infty} \mu(E)^{\frac{1}{p}-1} \int_E |f| d\mu \leq \frac{p}{p-1} \sup_{t>0} t\lambda_f^{\frac{1}{p}}(t),$$

where the supremum is taken over all measurable sets of finite measure. In particular $L^{p,\infty}(d\mu)$ is a Banach space with norm $\|\cdot\|_{L^{p,\infty}(d\mu)}$ given by the middle term in the above chain of inequalities. (Hints: For a set E consider subsets $E_{>t} = E \cap \{|f| > t\}$ and $E_{\leq t} = E \setminus E_{>t}$. For the LHS choose $E_{\leq t} = \emptyset$, and for the RHS do a general calculation and then optimize the value of t. Don't forget to prove completeness!) b) Prove that if $f \in L^1(\mathbb{R}^d)$ and $g \in L^{p,\infty}(\mathbb{R}^d)$ for $1 , then <math>f * g \in L^{p,\infty}(\mathbb{R}^d)$ and in fact one has:

$$\| f * g \|_{L^{p,\infty}(\mathbb{R}^d)} \leq \| f \|_{L^1(\mathbb{R}^d)} \| g \|_{L^{p,\infty}(\mathbb{R}^d)},$$

where $\|\cdot\|_{L^{p,\infty}(\mathbb{R}^d)}$ the norm above.