I. Schwartz Space

* we define $S\left(\mathbb{R}^{d}\right)$ as all Functions $f \in\left(\mathbb{R}^{d}\right)$ with $\left\|x \alpha \partial_{x}^{\beta} \phi\right\|_{c \infty}<\infty$ all $\alpha, z \in \mathbb{N}$.
- This is a Frechat space we semmorens $P_{\alpha 0}(\phi)=\left\|x^{2} d_{x}^{2} \psi\right\|_{100}$.
* NoR that $C_{\text {cop }}^{\infty}\left(\mathbb{R}^{d}\right) \subseteq S\left(\mathbb{R}^{d}\right) \subseteq \mathcal{P}^{P}\left(\mathbb{R}^{d}\right) \& C_{\text {con }}^{\infty}\left(\mathbb{R}^{d}\right)$ is dance $(X(\theta x) f(x))$, while $S\left(\mathbb{R}^{\mathbb{Q}}\right)$ is dace in $\mathscr{L}^{P}\left(\mathbb{R}^{d}\right)$, $\quad 1 \leq p$ coo.
eq: $e^{-|x|^{2}} \in S\left(\mathbb{R}^{d}\right)$ but not $C_{\text {coup }}^{\infty}\left(\mathbb{R}^{d}\right)$.

Lemma: $S\left(\mathbb{R}^{d}\right)$ is closed under products and $*$.

laminar Hal

Lemme: the operates $x^{\alpha}, \partial_{2}^{\alpha}$ are continues in the Fredhat Topology. $p:$: In genet if X, Y are TYS with $\mathcal{F}_{X, p}, \mathcal{F}_{Y, s}$, then
$T: X \rightarrow Y$ is continual of for emit $\& 3 P_{1}, \ldots, P_{N}$ with

$$
|q(T x)| \leqslant C_{i} \sum_{i=1}^{N}\left|P_{i}(2)\right| .
$$

II. The FT on $S\left(\mathbb{R}^{d}\right)$.

* Let $f \in S\left(\mathbb{R}^{4}\right)$, and define $\hat{f}(\xi)=\int e^{-[x \cdot 4} f(x) d x$.

Leman: $\left.|\hat{f}| \leq\|f\|_{L(\mathbb{R}}\right)$.
Pap: For $f \in S\left(\mathbb{R}^{d}\right)$ are has $\hat{f} \in S\left(\mathbb{R}^{d}\right)$, and in fact $\Phi(f)=\hat{f}$ is continues. Furthermore:
i) $\widehat{D_{x}^{\alpha} f}=\varepsilon^{\alpha} \hat{f}, \quad D_{0}=\frac{1}{\sigma_{1}} \partial_{j}$. Al $t_{0} \tau_{0}+(\omega)=t\left(x-x_{0}\right)$, then $\widehat{\tau_{0} f}=e^{i x_{0} \varepsilon \hat{f}}$.
ii) $\quad \widehat{x^{\alpha} f}=(-1)^{|\alpha|} D_{\varepsilon}^{\alpha} \hat{f}$. A120 $\quad \widehat{e^{i x \cdot \varepsilon^{-}} f}=\tau_{\varepsilon} \cdot \hat{f}$
pf: First show $\left.\hat{f} \in \operatorname{coc}_{(\mathbb{R} d)}\right) . \Delta_{n} \hat{f}=\int \Delta_{n}\left(e^{-i x z}\right) f(b) d x,\left|\Delta_{n}\left(e^{-(x \times e}\right)\right| \leqslant|x|$. By DCT $\quad \partial \hat{k}=-i \int e^{i x-9} x_{k} f(x) d x$. By induction $\hat{f} \in C^{\infty}\left(\mathbb{R}^{d}\right)$ and ir) holds.

To get i) we use $I B P \Rightarrow S e^{-i x-1} \partial_{x_{k}} f d x=i \varepsilon_{k} \int e^{-i x \cdot s} f d x=i z_{k} \hat{f}(\varepsilon)$.

Reamers: If $f \in C_{c o m p}^{\infty}\left(\mathbb{R}^{4}\right)$ then $\hat{f}(\varepsilon) 3$ andytroin ε, and exiuds to a holomophiz function on \mathbb{C}^{n}. Thus $\hat{f} \notin C_{\text {coup }}^{\infty}\left(\mathbb{R}^{d}\right)$.

Thy: $\Phi: S \rightarrow S$ is bijective and $f(x)=\frac{1}{(2 \pi)^{d}} \int e^{i x: s} \hat{f}(\tau) d \varepsilon$ all $f \in S\left(\mathbb{R}^{d}\right)$.
proof: let $R f(x)=f(-x)$, and consider the operior $T: S \rightarrow S$ given by
$T=R \Phi^{2}=R \cdot \Phi \cdot \Phi$. Now $\Phi(D \cdot)=x \Phi(\cdot), \Phi(x \cdot)=-\partial \Phi(\cdot)$, so $\Phi^{2}(x \cdot)=-x \Phi^{2}(\cdot)$ $\Phi^{2}(\partial \cdot)=-\partial \Phi^{2}(\cdot)$. Also $R(x \cdot)=-x R(\cdot), R(\partial \cdot)=-\partial R(\cdot)$. The $\{T, x]=[T, \partial]=0$. Now if $f \in S\left(\mathbb{R}^{d}\right)$ we have $f(x)=f\left(x_{0}\right)+\sum_{i=1}^{d} h_{i}\left(x ; x_{0}\right)\left(x-x_{0}\right)_{i}$.
 Thus $T f(x)=f\left(x_{0}\right) f\left(x_{0}\right)+\sum_{i=1}^{d}\left(x-x_{i}-T \phi_{i}\left(-; x_{0}\right), f(x)=T x\left(\cdots x_{0}\right)\right.$.
Setting $x=x_{0}$ we get $T f(\omega)=q(0) f(x)$ all x. Now $\{\partial, T\}=\partial_{q}$, $>0\left\{\equiv z_{0}\right.$.

Lemma: If $f(x)=e^{-\frac{1}{2}|x|^{2}}$ then $\hat{f}(g)=(x)^{k} e^{-\frac{1}{2}|\varepsilon|^{2}}$. In purtioukr $q_{0}=(\pi \pi)^{d}$.
pi: Taking a product reduce to $d=1$. Then comolitiy the square $\frac{1}{2} x^{2}+i \varepsilon x=\frac{1}{2}(x+i x)^{2}+\frac{1}{2},,^{2}$. Thus $\hat{f}(\varepsilon)=e^{-\frac{1}{x^{2}}} \cdot \int e^{-\frac{1}{2}(x+\varepsilon)^{2}} d x=e^{-\frac{1}{2} \varepsilon^{2}} \cdot \int e^{-\frac{1}{2} x^{2}} d x=\sqrt{2 \pi} e^{-\frac{1}{2} z^{2}}$.

The: let $f_{1} g \in S$, then $\int f \bar{g} d x=\frac{1}{(\pi \pi}, d \int \hat{f} \hat{g} d q$. Thus $\|f\|_{L_{2}}=\left((\pi \pi)^{-1 / 2}\|\hat{f}\|_{L_{2}}\right.$.
pf: Now that $S_{h} k=\operatorname{Sh} \hat{k}$. Also $\hat{\bar{g}}=R \bar{g}$. So if $\hat{h}=f, k=\bar{g}$ we get $h=\frac{1}{(\pi)^{d} d} R \hat{f}, \hat{k}=R \overline{\hat{g}}$, so $S f \bar{j}=\frac{1}{(\pi)^{d}} \int R \hat{f} \cdot R \overline{\hat{g}}=\frac{1}{\left(\pi \sigma^{d}\right.} \int \hat{f} \cdot \overline{\hat{j}}$.

Than: If $f, g \in S\left(\mathbb{R}^{u}\right)$ the $\hat{f \cdot g}=\frac{1}{\left(\frac{1}{2}\right)^{d}} \hat{f} * \hat{y} . \quad \hat{f_{y}}=\hat{f} \cdot \hat{y}$

After change of various set first innitity. The second is a direct calculation vising $e^{-i x-9}=e^{-i(x-y) \cdot 3} e^{-i y-i}$ and change of variables.

Thy: The FT exituds as a continual aproter $\Phi: L^{P}\left(\mathbb{R}^{d}\right) \rightarrow L^{P^{\prime}}\left(\mathbb{R}^{d}\right), 1 \leqslant P \leqslant 2$, with

$$
\|\hat{f}\|_{p} \leqslant(2 \tau)^{t / p}\|f\|_{p} .
$$

pf: For $p=1$ we have on extrusion wi this bound. For $p=2$ let $f_{n} \rightarrow f$ in L^{2} with $f_{n} \in S$. Then \hat{f}_{n} is laving in L^{2}, so define $\hat{f}=\ln \hat{f}_{n}$. Th n $\|\hat{f}\|_{2}=\left(\langle r)^{d_{2}}\|f\|_{2}\right.$. The ged resit follows by Risz-Thorm.

Renarle: If $f \in L^{2}$, then $\mathbb{1}_{B_{R}} f \in L^{\prime}$ so $\widehat{\mathbb{1}_{B_{R}} f}$ mokes suse.
we ser $\widehat{\mathbb{1}_{B_{R}} f} \rightarrow \hat{f}$ in L^{2}.

