I. The $F T$ on $S\left(\mathbb{R}^{n}\right)$ class Functions.

Defn: For $f \in S\left(\mathbb{R}^{n}\right)$ we set $F(f)(\xi)=\hat{f}(\xi)=\int e^{-i x \cdot \xi} f(x) d x$.

Proposition: $F: S\left(\mathbb{R}^{n}\right) \rightarrow S\left(\mathbb{R}^{n}\right)$ and 3 continuous. Also $F D_{j}=\xi_{j} F$ where $D_{j}=\frac{1}{i} \partial_{x^{j}}$, and $F_{x^{j}}=-D_{j} F$ when $D_{j}=\frac{1}{i} \partial_{\bar{\xi}} j$.
 By indudion $\xi^{\alpha} \partial_{z}^{\beta} \hat{f}$ exists and $\left|\xi^{2} \partial_{\xi}^{\beta} \hat{f}(\xi)\right|=\left|\widehat{D_{x}^{\alpha} x^{\beta} f}(\xi)\right| \leqslant\left\|D_{x}^{2} x^{3} f\right\|_{L} \leqslant\left\|(1+\mid x)^{n+1} D_{x}^{2} x^{\beta}+\right\|_{u}$ $\leqslant C_{1, \beta} \sum_{\left|\alpha^{\prime}\right| \leqslant|\beta|+n+1}\|f\|_{2, \beta}$, which also Shows $F: S \rightarrow S$ is continuous. $|B| \leqslant|\alpha|$

Lemma: Let $T: S \rightarrow S$ be a linear transformation such that $\left[T, x^{i}\right]=\left[T, \partial_{x i}\right]=0$.
Then $T f=c f$ for some $f_{i x} x e d \quad c \in \mathbb{C}$.
pf: First let $f \in S$ be such that $f\left(x_{0}\right)=0$. Then using Taylor's Formula with remainder we have $f(x)=\sum_{j=1}^{n} \int_{0}^{1} \partial_{j} f\left(\lambda x+(1-\lambda) y_{0}\right) d \lambda\left(x-y_{0}\right)^{j}$, so choosing $x \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $x \equiv 1$ on $|x| \leq 1$ we have $f(x)=\Sigma_{1}\left(x-x_{0}\right)^{j} \phi_{j}(x)$, where $\phi_{-}(x)=x\left(x-x_{0}\right) \int_{0}^{1} \partial_{j} f\left(x x+(1-i) x_{0}\right) d x+\left(1-x\left(x-x_{0}\right)\right) f(x) \frac{\left(x-x_{0}\right)^{j}}{\left|x-y_{0}\right|^{2}} \in S\left(\pi x^{n}\right)$.

Since $\left[T_{1}\left(x-x_{0}\right)^{j}\right]=0$ we get $T f(x)=\sum_{1}^{1}\left(x-x_{0}\right)^{j} T \phi_{j}(x)$ so $T f\left(x_{0}\right)=0$.
Now let $f \in S\left(\mathbb{T}^{n}\right)$ be geneal, then $f_{x_{0}}(x)=f(x)-x\left(x-x_{0}\right) f\left(x_{0}\right)$ is sunn that $f_{x_{0}}\left(y_{0}\right)=0$, So $0=T f_{x_{0}}\left(x_{0}\right)=T f\left(x_{0}\right)-f\left(x_{0}\right) \varphi\left(x_{0}\right)$, wee $y\left(x_{0}\right)=T x\left(--x_{0}\right)$. Since $T f \in S$, setting $f \equiv 1$ in the abd of fixed points shows $\quad \cup \in C^{\infty}\left(\mathbb{R}^{n}\right)$. On the other hard since $\left[T, \partial_{j}\right]=0$ we get $\partial_{j} \varphi \cdot f=0$ all $f t-\delta \quad j=1, \ldots$, . Hance $\varphi=c$ some constant.

Theorem (Fourier inversion) one has $R F^{2}=c I d$ for some $c \in \mathbb{C}$.
pt: we have $F^{2} D_{j}=F \xi_{j} F=-D_{j} F^{2}$ and $F^{2} x_{j}=-F D_{j} F=-x^{j} F^{2}$.
Hence $\left[R F^{2}, \partial_{j}\right]=\left[R F^{2}, x_{j}\right]=0$ and the result Follows.

Thm (Fourier inversion cont.) Let $f=e^{-\frac{1}{2}|x|^{2}}$. Then $\hat{f}(\xi)=(2 \pi)^{n / 2} e^{-\frac{1}{2}|z|^{2}}$. Thus for ever $f \in S$ one has $f(x)=\frac{1}{(2 \pi)^{n}} \int e^{i x \cdot \xi} \hat{f}(\xi) d \xi$.
pf: Note that $\left(i D_{j}+x^{j}\right) f=0$, thus $\left(i \xi_{j}-D_{j}\right) \hat{f}=0$, or $\left(i D_{j}+\xi_{j}\right) \hat{f}=0$ as well.
The only functions which satisfy these $O D E$ in each variable ore $h=c e^{-\frac{1}{2}|x|^{2}}$.
Thus $\hat{f}(\xi)=c e^{-\frac{1}{2}|\xi|^{2}}$ For some $c \in \mathbb{C}$, and $f(x)=\frac{1}{c^{2}} \int e^{i x-\xi} \hat{f}|z| d z$ in general by the previous result. To find c note that $\hat{f}(0)=\int f(x) d x$,
so $c=\int e^{-\frac{1}{2}|x|^{2}} d x=(2 \pi)^{n / 2}$.

We now recap and ext and the results thus far:

Theorem: Let $f, g \in S\left(\mathbb{R}^{n}\right)$, then $\hat{f}, \hat{g} \in S\left(\mathbb{R}^{n}\right)$ and

1) $f(x)=\frac{1}{(2 \pi)^{n}} \int e^{i x-\xi} \hat{f}(\xi) d \xi$
2) $\hat{D_{j} f}=\xi_{;} \hat{f}$ and $\hat{x j f}=-D_{j} \hat{f}$. Schematiodly $(x, \xi) \xrightarrow{F}(\xi,-x)$.
3) $\widehat{\tau_{y} f}=e^{-i y \cdot \xi} \hat{f}$, $\widehat{e^{i x \cdot \eta} f}=\tau_{n} \hat{f}$, and $\widehat{f \circ A}=\frac{1}{|A|} \hat{f}_{0}\left(A^{-1}\right)^{+}$all $A \in G I_{n}$.
4) $\langle\hat{f}, g\rangle=\langle f, \hat{g}\rangle$
5) $\hat{f_{* g}}=\hat{f} \hat{g}$
6) $\hat{f g}=\frac{1}{(2 \pi)^{n}} \hat{f}+\hat{g}$
7) $(f, g)=\frac{1}{(2 \pi)^{n}}(\hat{f}, \hat{g})$. Thus $\|f\|_{L^{2}}=\frac{1}{(2 \pi)^{n / 2}}\|\hat{f}\|_{L^{2}}$.
pf: We have already shown $\backslash(2)$, and 3) is a direct calculation.
8) Both integrals ore $=\iint e^{-i x \cdot \xi} f(x) g(\xi) d x / \xi$ by Fubini.
9) For $f, g \in S$ and $\phi \in \omega^{\infty}$ we have $\int \phi(x) f+g(x) d x=\iint f(x) g(y) \phi(x+y)$. Setting $\phi(x)=e^{-i x-\xi}$ it follows.
10) By $(1,3), 5) \quad \frac{1}{(2 \pi)^{2 n}} R F(\hat{f}+\hat{g})=\frac{1}{(2 \pi)^{n} n} R(\hat{\hat{f}} \cdot \hat{\hat{g}})=\frac{1}{(2 \pi)^{2}} R F^{2} f \cdot R F^{2} g=f \cdot g$.

Applying F to both sides and using $\frac{1}{(2 \pi)^{n}} F R F=\frac{1}{(2 \pi)^{n}} R F^{2}=I d$ gives the :identity.
7) Note that $\hat{\bar{g}}=R \overline{\hat{g}}$, by 1$), 3), 4)$ we have $(f, g)=\frac{1}{(2 \pi)^{n}}\langle R F \hat{f}, \bar{g}\rangle=\frac{1}{(2 \pi n}\langle\hat{f}, R F \bar{g}\rangle=-\frac{1}{(2 \pi n}\langle\hat{f}, \overline{\hat{g}}\rangle$.
II. The fourier transform on $S^{\prime}\left(\mathbb{R}^{n}\right)$ and in $L^{P}\left(\mathbb{R}^{n}\right)$.

Defn: Let X be LCTVS whose topology is given by seminarms $\|\cdot\|_{j}, j \in J$ (Possidy uncountable). Le set $X^{y}=\left\{u: x \rightarrow c| | u(x) \mid \leqslant C_{u} \sum_{k=1}^{N(h)}\|x\|_{j_{k}}\right.$, where ja is some finite collection of ind rus depending on u.

Den: we call $S^{\prime}\left(\mathbb{R}^{n}\right)=S^{+}\left(\mathbb{R}^{n}\right)$ the space of "tempered distriations". We give S^{\prime} the weak-y topology $u_{n} \rightharpoonup u$ if $u_{n}(f) \rightarrow u(f)$ al $f \in S$. If $u \in S^{\prime}\left(\mathbb{R}^{n}\right)$ we define $\hat{u} \in S^{\prime}\left(\mathbb{R}^{n}\right)$ via the formula $\hat{u}(f)=u(\hat{f})$ all $f \in S\left(\mathbb{R}^{n}\right)$.

We say a $u \in S^{\prime} \|_{13}$ a function" if $u(f)=\langle g, f\rangle$ for some $g \in L_{\text {loo }}\left(\mathbb{R}^{n}\right)$ with $(\mid H \times 1)^{-N} g \in L^{\prime}$ for $N /$ large.
we say $u \in S^{\prime}$ " B in $L^{p^{n}}$ if $u(f)=(g, f)$ some $g \in L^{p}\left(\mathbb{R}^{n}\right)$.
In geneal well write $u(f)=\langle u, f\rangle$ for the pairing $S^{\prime} \times S \rightarrow \mathbb{C}$.

Lemma: If $u \in S^{\prime}\left(\mathbb{R}^{n}\right)$ is a function then \exists a unique $g \in L_{l o c}^{\prime}\left(\mathbb{R}^{n}\right)$ lop to are. equivalence) such that $\langle u, f\rangle=\int g f d x$ all $f \in S\left(\mathbb{R}^{n}\right)$. In addition, $u \in L^{P}(\mathbb{R})$ for $\mid<p \leq \infty$ if $3 c>0$ such that $|\langle u, f\rangle| \leqslant c\|f\|_{P^{\prime}\left(\mathbb{R}^{n}\right)}$ all $f t S\left(\mathbb{R}^{n}\right)$.

Remark: If $|\langle u, f\rangle| \leq C\|f\|_{L_{00}\left(\mathbb{R}^{n}\right)}$ we cannot conclude that $u \in L^{\prime}\left(\mathbb{R}^{n}\right)$, but we do know there exists a unique comply Radon measure μ such that $(u, f)=\int_{\pi^{n}} f d \mu$ all $f \in S\left(\mathbb{R}^{n}\right)$.
pf: Let $S(g-\tilde{g}) f=0$ all $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $g-\bar{g} \in \mathcal{C}^{\prime}$ lc. Then one can tale a service $f_{n} \rightarrow X_{B_{r}}\left(x_{0}\right)$ pointure and $0 \leqslant f_{n} \leqslant B_{2}\left(x_{0}\right)$ by the c_{c}^{∞} versing of Urysohn's Lemma. Thus $\frac{1}{\left(B_{r}\left(x_{0}\right) \mid\right.} S_{B_{r}\left(x_{0}\right)}(g-\widehat{g})=0$ all $x_{0} \in \mathbb{R}^{n}$ and roo. Thus $g=\tilde{g}$ at every lebesgue point of $9-\tilde{y}$, here ace.

Khat, if $|u| f\left|\mid \leqslant C\|f\|_{p^{\prime}}\right.$ some $1 \leqslant p^{\prime} 2 \infty$ for all $f \in S\left(\mathbb{R}^{*}\right)$, then by dusity u extuds to an element of $\left(L^{P^{\prime}}\right)^{\forall}$. Thus $\left.u \mid f\right)=\int_{m^{n}} g f d x$ some $g+L^{P}\left(\mathbb{R}^{n}\right)$ all $f \in S \subseteq L^{P^{\prime}}$. Note that the $g \in L^{\rho}$ represting a is unique (even from dded results).

Well develop the theory of $S^{\prime}\left(\mathbb{R}^{n}\right)$ late. For now we use it to give the result:

Thy (Hausdorll-young): Let $u \in S^{\prime}\left(\mathbb{R}^{n}\right)$, then if $u \in \mathbb{L}^{P}\left(\mathbb{R}^{n}\right)$ for $1 \leqslant p \leqslant 2 \quad \hat{u} \in \mathbb{L}^{\prime}\left(\mathbb{R}^{n}\right)$ and one has the estimate $\|\hat{u}\|_{\mathbb{L}^{\prime}}\left(\mathbb{R}^{n}\right) \leqslant(2 \pi)^{n / p^{\prime}}\|u\|_{\mathbb{P}}\left(\mathbb{R}^{n}\right)$. More specifically one has:
i) If $u \in L^{\prime}\left(\mathbb{R ^ { n }}\right)$ the $\hat{u} \in C_{0}\left(\mathbb{R}^{n}\right)$ and $\|\hat{u}\|_{\infty_{\infty}} \leqslant\|u\|_{L}$.
ii) If $u \in L^{2}\left(\mathbb{R}^{n}\right)$ then $\hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$ and $\|\hat{u}\|_{L^{2}}=(2 \pi)^{n / 2}\|u\|_{L^{2}}$.
pf: First prove i) and $i i)$. If $u \in L^{\prime}$ and $f \in S$ then we con define $\hat{u}(\xi)=\int e^{-i x \cdot \xi} u(x) d x$ directy, and we still have $\langle\hat{u}, f\rangle=\langle u, \hat{f}\rangle=u(\hat{f})=\hat{u}(f)$. Thus \hat{u} as a distribution is given by integration against $\hat{\psi}(\xi)$ os a function. The result then follows from the uniqueness lemma above. That $\hat{u} \in C_{0}\left(\mathbb{R}^{r}\right)$ follows from density of $S \subseteq L^{\prime}$ and $F: S \rightarrow S$.

Now let $u \in L^{2}$. Then for all $f \in S\left(\mathbb{R}^{n}\right)$ we have the estimate:

$$
|\hat{u}(f)|=|u(\hat{f})|=|S u \cdot \hat{f}| \leqslant\|u\|_{L^{2}}\|\hat{f}\|_{L^{2}}=(2 \pi)^{n / n}\|u\|_{L^{2}}\|f\|_{L^{2}} \text {. Thus, by the }
$$ above lumina 3 unique $g \in L^{2}$ with $\hat{u}(f)=\int g(\xi) f(\xi) d \xi$ all $f \in S$. We call $\hat{u}(\xi)=g(\xi)$ (by "abuse of notation"). By the oboli inequality re actually have $\|\hat{u}\|_{L^{2}}=\sup _{\|f\|_{12}=1}|\langle\hat{u}, f\rangle|=\sup _{\|f\|_{12}=1}|\langle u, \hat{f}\rangle|$. But $\|f\|_{L^{2}}=(2 \pi)^{-\pi / 2}\|\hat{f}\|_{L^{2}}$ all $f \in S$, and $F B$ a bijection on S

 So the resit follows From Riesz-Thorin interpolation. Notice that for $u \in \mathbb{L}^{P}\left(\mathbb{R}^{n}\right), 1 \leq p \leq 2$,
the function $\hat{u} \in L^{P^{\prime}}\left(\mathbb{R}^{n}\right)$ gan by the Riesz-Thorin the must agree with \hat{u} as a distribution because if $u_{k} \in L^{\prime}\left(\mathbb{R}^{n}\right)$ are such that $u_{k} \rightarrow u$ in \mathcal{L}^{P} then $\hat{u}_{k} \rightarrow \hat{u}$ in L^{\prime} where $\hat{u}_{k} t \hat{u}$ ore given by Riest-Thorin, but $\hat{u}_{k}(\xi)=\int e^{-i x-\eta} u_{k}(x) d x$ is also the distributional FT as explained in 1 above, and thus $\hat{u}_{k} \rightharpoonup \hat{u}$ as distributions so the RT 4 distributional FT of u agree because the distributional FT is continuous under weak limits.

