I. The FT on S(Rn) class Functions.

Defu: For
$$t \in S(\mathbb{R}^n)$$
 we set $\pm [t](\overline{s}) = \overline{t}(\overline{s}) = 2 \overline{e}_{ix,\overline{s}} t(x) \, dx$

Proposition: F:S(Rⁿ)→S(Rⁿ) and 3 continuous. Also FD_j =
$$\overline{z}_{j}$$
 F where $D_{j} = \frac{1}{2}\partial_{x}\overline{z}_{1}$,
and Fx³ = - D₃ F when $D_{j} = \frac{1}{2}\partial_{\overline{z}}\overline{z}_{1}$.
pt: The Formula $\partial_{xi}\overline{z}(\overline{z}) = \overline{z}_{\overline{z}_{3}}\overline{z}(\overline{z})$ Follows at once via IBP. $D_{j}\overline{z}(\overline{z}) = -(\overline{x}\overline{z})(\overline{z})$ is also direct.
By induction $\overline{z}^{4}\partial_{\overline{z}}^{B} \widehat{+}$ exists and $|\overline{z}^{4}\partial_{\overline{z}}^{B} \widehat{+}(\overline{z})| \leq ||D_{x}^{4}\overline{z}^{B} \widehat{+}||_{L^{1}} \leq ||(|1|x|)^{n_{1}}D_{x}^{4}\overline{z}^{B} \widehat{+}||_{L^{1}}$
 $\leq C_{1,B} \sum_{|\underline{z}|||\underline{z}||_{2}||\underline{z}||_{1}}$, which also Shows F:S ⇒S is continuous.

Lemma: Let T:S-3S be a linear transformation such that
$$[T_1, x^i]_2 = [T_1, \partial_2 i]_2 = 0$$
.
Then $Tf = cF$ for some fixed $c \in C$.
 $pf:$ First let $f \in S$ be such that $f(x_0) = 0$. Then using Taylor's Founda with remainder
we have $f(x) = \sum_{i=1}^{n} \int_0^1 \partial_3 f(1x) f(1x) y_0 dx (x, x_0)^i$, so choosing $X \in C_{\infty}^{\infty}(\mathbb{R}^n)$ with $X \equiv 1$ on $T_1[x]$
we have $f(x) = \sum_{i=1}^{n} \int_0^1 \partial_3 f(1x) f(1x) y_0 dx (x, x_0)^i$, so choosing $X \in C_{\infty}^{\infty}(\mathbb{R}^n)$ with $X \equiv 1$ on $T_2[x]$
we have $f(x) = \sum_{i=1}^{n} (x - x_0)^2 \phi_3[x]$, where $\phi_3(x) = -X(x - x_0) \int_0^1 \partial_3 f(1x) r(x) y_0 dx + (1 - X(x - x_0)) F(x) \frac{(x - x_0)^3}{1x - x_0 r^2} \in S(\mathbb{R}^n)$.
Since $[T_1, (x - x_0)^3]_{=0}$ we get $T f(x) = \sum_{i=1}^{n} (x - x_0)^3 T \phi_3(x)$ so $T f(x_0) = 0$.
Now let $P(S(\mathbb{R}^n)$ be general, then $f_{X_0}(x) = f(x) - X(x - x_0) F(x_0)$ is suce that $f_{X_0}(x_0) = 0$,
So $0 = T f_{X_0}(x_0) = T F(x_0) - F(x_0) (y(x_0)$, where $y(x_0) = T - X(x - x_0)$. Since $T f \in S_1$, $S = 1$
 $F = 1$ in the hold of F fixed points shows $y \in C^{\infty}(\mathbb{R}^n)$. On the other hand
show $[T_1, \partial_3]_2 = 0$ we get $\partial_3[y, f = 0$ of $P(S = \frac{1}{3}]_{-1}$, $y = Hance Y = C$ some constant.

Theorem (Fourier invession) One has
$$RF^2 = cId$$
 for some $c\in C$.
ph: we have $F^2D_j = F\overline{z}_jF = -D_jF^2$ and $F^2x^j = -FD_jF = -x^jF^2$.
Have ERF^2 , $\partial_j J = ERF^2$, $x^j J = 0$ and the risult Follows.

Then (Fourier inversion cond.) Let
$$f = e^{\frac{1}{2}txi^2}$$
. Then $\hat{f}(\bar{z}) = [t_{ff}]^{h}e^{\frac{1}{2}|\bar{z}|^2}$. Thus for every
 $f \in S$ one has $f(x) = \frac{1}{(\pi t^2)^n} \int e^{ix\cdot\bar{z}} \hat{f}(\bar{z})d\bar{z}$.
pt: Note that $(iD_3 + x^3)\hat{f} = 0$, thus $(i\bar{z}_3 - D_3)\hat{f} = 0$, or $(iD_3 + \bar{z}_3)\hat{f} = 0$ as real.
The only functions which setisfy these ODE in each variable are $h = ce^{\frac{1}{2}txi^2}$.
Thus $\hat{f}(\bar{z}) = ce^{\frac{1}{2}|\bar{z}|^2}$ For some cec , and $f(x) = \frac{1}{c^2} \int e^{ix\cdot\bar{z}} \hat{f}(\bar{z})d\bar{z}$ in
graved by the previous result. To find c note that $\hat{f}(o) = \int \hat{f}(x)dx$,
so $c = \int e^{\frac{1}{2}txi^2}dx = (z_{IT})^{n/2}$.

We now recap and extend the results thus Far:

Theorem: Let
$$f,g \in S(\mathbb{R}^n)$$
, thun $\hat{f}, \hat{g} \in S(\mathbb{R}^n)$ and
i) $f(x) = [\widehat{\operatorname{chr}}_{Y} S e^{ix\cdot x} \hat{f}(x) dx$
i) $\widehat{f}(x) = \widehat{c}^{ix\cdot x} \hat{f}(x) dx$
i) $\widehat{f}(x) = \widehat{c}^{ix\cdot x} \hat{f}(x) dx$
i) $\widehat{f}(x) = \widehat{c}^{ix\cdot x} \hat{f}(x) = \widehat{f}(x)$, and $\widehat{f} \circ \widehat{f}(x) = \widehat{f}(x) = \widehat{f}(x)$.
i) $\widehat{f}(x) = \widehat{c}^{ix\cdot x} \hat{f}(x) = \widehat{f}(x)$, and $\widehat{f} \circ \widehat{f}(x) = \widehat{f}(x) = \widehat{f}(x)$.
i) $\widehat{f}(x) = \widehat{f}(x)$
ii) $\widehat{f}(x) = \widehat{f}(x)$
ii) $\widehat{f}(x) = \widehat{f}(x)$
ii) $\widehat{f}(x) = \widehat{f}(x)$
iii) $\widehat{f}(x) = \widehat{f}$

II. The Fourier transform on S'(IRm) and in LP(IRm).

Defin: Let X be LCTVS whose topology is given by seminorens 11.113, JEJ (possibly uncountable). Le set X#={u:X->c | luix)1< Cu Zi II x 113k, where Jk is some finite collection of motions depending on u.

Detry: we call
$$S'(\mathbb{R}^n) = S^{k}(\mathbb{R}^n)$$
 the space of "trapered distributions". We give
 S' the make-to topology $U_n \rightharpoonup U$ titt $U_n(t) \rightarrow u(t)$ all $f \in S$.
If $u \in S'(\mathbb{R}^n)$ we define $\hat{u} \in S'(\mathbb{R}^n)$ via the formula $\hat{u}(t) = u(\hat{t})$ all $f \in S(\mathbb{R}^n)$.
We say a $u \in S'$ "is a function" if $u(t) = \langle g_1 h \rangle$ for some $g \in U_{loc}(\mathbb{R}^n)$
with $(iH_{XI})^N g \in U$ for λ' longe.
We say $u \in S'$ "is a $U^{p'}$ it $u(t) = \langle g_1 h \rangle$ some $g \in U_{loc}(\mathbb{R}^n)$.
The general we'll write $u(t) = \langle u_1 h \rangle$ for the pairing $S'_X S \rightarrow C$.

Remode: It ILU, F>1 & Cliffly (MM) we cannot conclude that util (MM), but we do know there exists a unique complex Radon missure on such that (u, F>= S for all ft S(MM).

pt: Let $S(g-\tilde{g})F=0$ all $F\inC_{c}^{\infty}(\mathbb{R}^{n})$ with $g-\tilde{g}\in L^{1}(\mathbb{R}^{n})$ one can take a sequence $f_{n} \rightarrow \mathcal{X}_{B_{r}(X_{0})}$ pointure and $O\leq f_{n}\leq B_{2}(X_{0})$ by the Coe version of Ury soluties Lemma. Thus $\frac{1}{1B_{r}(X_{0})}\int_{B_{r}(X_{0})}(g-\tilde{g})=0$ all $X_{0}\in\mathbb{R}^{n}$ and roo. Thus $g=\tilde{g}$ at every Laborsgue point of $g-\tilde{g}$, have a.e.

We'll develop the theory of S'(IR") later. For now we use it to give the result:

$$\frac{\text{Thm}\left(\text{HausdorfP-Young}\right)}{\text{Condense of the stimule of the S'(IR^n)}, \text{ then if u \in L^p(IR^n)} \quad \text{For } 1 \leq p \leq 2 \quad \hat{u} \in L^p'(IR^n)}$$
and one has the estimate $\|\hat{u}\|_{L^p'(IR^n)} \leq (2\pi)^{n/p'} \|u\|_{L^p(IR^n)}.$ More specifically one has:
i) If $u \in L^2(IR^n)$ the $\hat{u} \in C_o(IR^n)$ and $\|\hat{u}\|_{L^\infty} \leq \|u\|_{L^1}.$
ii) If $u \in L^2(IR^n)$ then $\hat{u} \in L^2(IR^n)$ and $\|\hat{u}\|_{L^\infty} = (2\pi)^{n/2} \|u\|_{L^2}.$

PE: First prove i) and ii). If util and
$$f \notin g$$
 then we can define $\hat{u}(\hat{s}) = \int \hat{e}^{i\hat{x}\cdot\hat{s}} u(x)dx$
directly, and we still have $(\hat{u}, \hat{s}) = (u, \hat{f}) = \hat{u}(\hat{f}) = \hat{u}(\hat{f})$. Thus \hat{u} as a distribution
is given by integration against $\hat{u}|\hat{s}\rangle$ as a function. The result then follows From the
unspinness homma above. That $\hat{u}\in Co(\mathbb{R}^n)$ follows From density of $S \subseteq U$ and $F:S \Rightarrow S$.
Now let $u \in L^{2}$. Then for all $f \notin S(\mathbb{R}^n)$ we have the estimate:
 $|\hat{u}(f)| = |u(\hat{f})| = |\int u \cdot \hat{f}| \leq ||u||_{L^{2}} ||\hat{f}||_{L^{2}} = (2\pi)^{n/2} ||u||_{L^{2}}$. Thus, by the
above homma 3 unique $g \notin L^{2}$ with $\hat{u}(f) = \int g(\hat{s}) \hat{f}|\hat{s}| d\hat{s}$ all $f \notin S$. We call $\hat{u}(\hat{s}) = g(\hat{s})$
 $(by above of notation!)$. By the above ansatching we actually have $\|\hat{u}\|_{L^{2}} = \sup_{\substack{\||\hat{s}\|_{L^{2}} \\ f \notin S}} ||\hat{u},\hat{f},\hat{f}|| = ||\hat{u},\hat{f}||_{L^{2}}$ all $f \notin S$, and F is a bijinition on S
So the RHS above becomes sup $||\langle u,\hat{f},\hat{f}|| = (\pi)^{n/2}$. It finds
 $f \notin S$.
Fields observe becomes $\sum_{\substack{\||\hat{s}\|_{L^{2}} \\ \|f\|_{L^{2}} = (\pi)^{n/2}} \frac{||\hat{u}||_{L^{2}}}{\|f\|_{L^{2}} = (\pi)^{n/2}}$.

(c) we now know F: L'+2-> L⁰⁰+L² with boards || F || L'=> L⁰⁰ ≤ 1 and || F || L²=η2² (π)^{N/2} So the result follows From Rirsz-Thorm interpolation. Notice that for ut L^P(R⁰), 12p(2,