* Overview: Senicontinuity, weak derivatives- BV, Ac, etc.

I. Semicontinuity A. Defn & examples <u>Defn</u>: A function $f: X \rightarrow \mathbb{R}$ is "lower semicontinuous" if $f^{-1}((a, \infty))$ is open for all a & IR. A function g:X > IR is 'upper semicontinuous' if f=-y is LSC. (i.e. gi((-00,c)) open all attic). es: If f: I > IR is Monotone increasing \$ left continuous its LSC + <u>cg</u>: If f b)=70(x), v open then f is LSC. If g h)= xe (x) then g is usc. B. Basic Properties Thm: If f:X > IR 3 LSC then for each xy > x one has (4) flo) (tim flow). If X is 1st countable (e.g. a metric space), then if (4) holds For every xn + x f is LSC. pf: If f is LSC let $x_n \rightarrow x$, and choose some a LATA). Since $V_{\alpha} = f^{-1}((x_n, \omega)) \ge x$ is open f(2n) & Va for an N. Thus a & lin fran). Taking sup as find get the result. Now suppose fixed fixed all xn >x. If f not USC then 3 atik such that Va not open, so 3 2 & Va NOVa. Thus for 24-V open 3 2, EVa with surth. Doing this for a countable abod base at a gives a sequence 2, & V_ and xn→xtu. Then f(2n) < a all n, so dim f(2n) < a < f(x) *

Thm: If fig: X - IR are LSL, hiso, then so are high ftg.

$$\underline{pt}: (\underline{ft_{g}})^{\gamma}((\alpha_{\infty})) = \bigcup_{\underline{btc} \neq \alpha} \underbrace{\mathcal{V}_{b}^{\dagger} \mathcal{V}_{c}^{\dagger}}_{\underline{btc} \neq \alpha} \underbrace{\frac{\sqrt{\frac{a}{2}}}{\sqrt{\frac{b}{2}}}}_{\underline{btc} \neq \alpha} \underbrace{\frac{\sqrt{\frac{a}{2}}}{\sqrt{\frac{b}{2}}}}_{\underline{btc} \neq \alpha}$$

Thm: If f:X=>IR is LSC and KEX is compart, then 3 zetk sit. f(x) (fly) all yek. <u>pf:</u> KEU Ja, and there is a finite subcover. a GIR

$$\frac{Thm!}{Let ELSC(X)} = \left\{ f: X \rightarrow \{\infty, \omega\} \right\} \quad T_{n} \text{ open all } , \text{ then if } f_{A} \in ELSC(X) , d \in I ,$$

$$f = \sup_{d \in I} f_{d} \quad B \quad m \quad ELSC(X) .$$

$$\underbrace{Pf: f^{-1}((\alpha, \omega)) = \bigcup_{d \in I} f^{-1}((\alpha, \omega)) }_{d \in I} .$$

Thm: Let $f: x \rightarrow c_0, \omega$ be an ELSC function. Then if μ is a positive Radon measure $\int_{X} F d\mu = \sup \left\{ \begin{array}{l} S v d\mu \\ x \end{array} \right\} o \in v \in \{x, v \in C_{x}(x) \right\}.$

The shows $\sum_{x} f d_{m} \leq s_{10} \left\{ \sum_{x} \psi d_{m} \right\} o \leq \psi \leq 1$, $\psi \in C_{1}(x)$ and the other direction is trivial.

pf: let
$$\phi_n \nearrow f$$
 be a series of simple functions, and let g_n LSC with
 $g_n \nearrow \phi_n - \phi_{n-1}$, $\phi_{-1} \equiv 0$, and such that $\int_X g_n d_n \leqslant \int_Y (\phi_n - \phi_{n-1}) d_n + \epsilon 2^{-n}$ (inducting $g_{n-2} \equiv 0$).
Note that $\phi_n - \phi_{n-2} \equiv 2i \alpha_{kin} \Im_{E_{kin}}$, $\alpha_{kin} > 0$, and $\exists E_{kin} \subseteq U_{kin}$ with $\mathcal{M}(U_{kin}) \leqslant \mathcal{M}(E_{kin}) + \frac{\epsilon 2^{-n}}{\alpha_{kin}}$.
Then $f \equiv \sum_{n=1}^{\infty} (\phi_n - \phi_{n-1}) \leqslant g \equiv \sum_{n=1}^{\infty} g_n$. And g is ELSC with $\int_X g d_M \leqslant \int_X f d_M + G$.
 f The proof of the USC part is similar and in the test.

* Let MEM(R) be a frite (complue) Borel measure. Define F(2)=M(1-0,23)

is the (left continuous) CDF of
$$\mu$$
.
If $\mu_{RW} = \sup_{z_{V} \dots < z_{n}} \sum_{k=1}^{n} |F(z_{k}) - F(z_{k_{n}})| = 11 \text{ m h}_{M(x)}$.
If $F \in BV(R)$ that $F(z) = F(z_{0}) = \sum_{z \to \pm \infty} \sum_{z \to \pm \infty}^{n} |F(z_{0}) - F(z_{k_{n}})| = 11 \text{ m h}_{M(x)}$.
If $F \in BV(R)$ that $\lim_{z \to \pm \infty} F(z) = F(z_{0}) = \sum_{z \to \pm \infty} \sum_{z \to \pm \infty}^{n} |F(z_{0})| = \sum_{z \to \pm \infty} |F(z)| = \sum$

* The shows L calcule to
$$G(R)$$
, so $\exists \ \mu \in A(R)$ such that
(*) - $\sum_{R} F_{R}^{1}(dn = L(u) = \sum_{R}^{1} V(dn = d)$ (VE $C_{max}^{1}(R)$).
Defin: Use FEBSTERN, & point zER a called a "gap" of $F(x_{1}^{-}) \neq F(x_{1}^{-})$.
(recall that $\sum_{x \neq y}^{1} F(x_{1}^{-}) = d_{max}^{1}$ reals for $F(x_{1}^{-}) \neq F(x_{1}^{-}) \neq F(x_{1}^{-})$.
(recall that $\sum_{x \neq y}^{1} F(x_{1}^{-}) = d_{max}^{1}$ reals for $F(x_{1}^{-}) \neq F(x_{1}^{-}) \neq F(x_{1}^{-})$.
(recall that $\sum_{x \neq y}^{1} F(x_{1}^{-}) = d_{max}^{1}$ reals for $F(x_{1}^{-}) \neq F(x_{1}^{-}) \neq F(x_{1}^{-})$.
(recall that $\sum_{x \neq y}^{1} F(x_{1}^{-}) = d_{max}^{1} F(x_{1}^{-}) = f(x_{1}^{-}) \neq F(x_{1}^{-}) \neq F(x_{1}^{-})$.
(recall that $\sum_{x \neq y}^{1} F(x_{1}^{-}) = d_{max}^{1} = f(x_{1}^{-}) = f$