I. Sobolev Spaces
A. Basic definitions and proorties

Defn: Let $u \in S^{\prime}\left(\mathbb{R}^{n}\right)$, then for any $\alpha \in \mathbb{N}^{n}$ we define $\partial^{\alpha} u$ via $\partial^{\alpha} u(f)=(-1)^{(\alpha)} u\left(\partial^{\alpha} f\right)$ for all $f \in S\left(\mathbb{N}^{n}\right)$.

Remark: Thus, if $u \in S^{\prime}\left(\mathbb{R}^{n}\right) \cap L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ then we define $\partial^{\alpha} u$ via $(-1)^{|2|} \int_{\mathbb{R}^{n}} u \cdot \partial^{\alpha} f d x$ all $f \in S\left(\mathbb{R}^{n}\right)$.
In gural for $u \in L_{\text {lac }}^{\prime}\left(\mathbb{R}^{n}\right)$ loony growth as $\left.|x| \rightarrow \infty\right)$ this Formula makes sense For $f \in C_{e}^{\infty}\left(\mathbb{R}^{n}\right)$.

Den: Let $k \in \mathbb{N}$. We say $u \in S^{\prime}\left(\mathbb{R}^{n}\right)$ is in $H^{k}\left(\mathbb{R}^{n}\right)$ if $\alpha^{2} u \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $|\alpha| \leqslant k$.
In this case we set $\|u\|_{H^{k}}^{2}=\|u\|_{L^{2}}^{2}+\sum_{|\Delta|=k}\left\|a^{\alpha} u\right\|_{L^{2}}^{2}$.
Note: We will replace this norm later with an equivalent one.

Proposition: $u \in H^{k}$ iff $\quad\left(1+|\xi|^{2}\right)^{k / 2} \hat{u}(\xi) \in L^{2}\left(\mathbb{R}^{n}\right)$.
pf: We have $\left\langle\widehat{\partial^{\alpha} u}, f\right\rangle=\left\langle\partial^{\alpha} u, \hat{f}\right\rangle=(-1)^{|\alpha|}\left\langle u, \partial_{x}^{\alpha} \hat{f}\right\rangle=\left\langle u, \widehat{(i \xi)^{\alpha} f}\right\rangle=\left\langle\hat{u},(i \xi)^{2} f\right\rangle$ $=\left\langle(i \xi)^{2} \hat{u}, f\right\rangle$. Now $\partial^{2} u \in L^{2}$ if $\left|\left\langle\partial^{2} u, g\right\rangle\right| \leqslant C\|g\|_{L^{2}}$ all $g \in S\left(\mathbb{R}^{n}\right)$, and
 i.1. $\left\|\xi^{\alpha} \hat{u}\right\|_{L^{2}}=(2 \pi)^{1 / h}\left\|\partial^{2} u\right\|_{L^{2}}$. So $u \in H^{k}$ implies $\left.\|\hat{u}\|_{L^{2}}^{2}+\sum_{L \mid L}^{2}=K<\xi^{\alpha} \hat{u} \|_{L^{2}}^{2}=\int\left(1+\sum_{|A|=K}^{2}\left|\xi^{\alpha}\right|^{2}\right)|\hat{u}| \xi\right)\left.\right|^{2} d \xi<\infty$. The proof follows by choosing $C_{K}>0$ so that $C_{k}^{-1}\left(1+\left|\sum\right|^{2}\right)^{k} \leqslant 1+\sum_{\mid A=k}^{1}|3 \alpha|^{2} \leqslant C_{k}\left(1+|E|^{2}\right)^{k}$.

Desman: Let $s \in \mathbb{R}^{n}$, we define $\mathbb{H}^{s}\left(\mathbb{R}^{n}\right) \subseteq S^{\prime}\left(\mathbb{R}^{n}\right)$ to be all $u \in S^{\prime}\left(\mathbb{R}^{n}\right)$ such that $\langle\xi\rangle^{s} \hat{u} \in L^{2}\left(\mathbb{R}^{r}\right)$ where $\langle\xi\rangle^{s}=\left(1+|\xi|^{2}\right)^{s / 2}$. We sit $\|u\|_{H^{s}}=\left\|\langle\xi\rangle^{s} \hat{u}\right\|_{L^{2}}$.

Lemma: $H^{s}\left(\mathbb{R}^{n}\right)$ is a Hilbert space $w /$ inv product $\langle f, g\rangle_{s}=\left\langle\langle\Sigma\rangle^{2 s} \hat{f}_{1} \hat{g}\right\rangle_{L^{2}}$. The dual of H^{s} is H^{-S}.

In addition, for any $\alpha \in \mathbb{N}^{n} \quad \partial^{\alpha}: H^{s} \rightarrow H^{s-\alpha \mid}$ is a continuous lInear operator. pf: The proofs are more or las immediate by doing things on the fourier transform side.

B. Sobolev Embeddings

Theorem: Let $s>n / 2$. Then every $u \in H^{s}\left(\mathbb{R}^{n}\right)$ can be changed on a set of measure zero so that $u \in C_{0}\left(\mathbb{R}^{n}\right)$, and one has the bound $\|u\|_{L^{\infty}} \leqslant C_{s}\|u\|_{H^{s}}$.
pf: We know $u \in H^{s}$. $\langle i\rangle^{3} \hat{u} \in L^{2}$. If $s>^{n / 2}$ the $\langle\xi\rangle^{-S} \in L^{2}$ s. by Holder $\hat{u}=\langle\varepsilon\rangle^{-s}\langle\xi\rangle^{s} \hat{u} \in L^{\prime}\left(\mathbb{R}^{n}\right)$. Then $u(x)=\frac{1}{\left(\pi \pi^{n}\right.} \int e^{i x \cdot x} \hat{u}(\varepsilon) d z \in C_{0}\left(\mathbb{R}^{n}\right) \quad\left(\hat{u} \in L^{\prime}\right)$, and we know th. 5 formula holds posture ce. Finally $\left.|u(x)| \leq \frac{1}{(2 \pi)^{n}} \int|\hat{u}| \varepsilon\right) \left\lvert\, d i \leqslant \frac{1}{\left(\pi m^{n} n\right.}\left\|\langle\varepsilon)^{-S}\right\|_{L^{2}}\|u\|_{H^{3}}\right.$.

Remark: This proof d so shows that for $u \in H^{s}$ with $s>M_{2}+k$ we have $u \in C_{0}^{k}\left(\mathbb{R N N}_{1}\right)$, because by inusson we con comate the diffrace guotints $\Delta_{k, h} u=h^{\prime}(u(x+$ he k $)-u(x))$ $=\frac{1}{\left(2 m^{n}\right.} \int h^{-1}\left(e^{\left.i h \rho_{k}\right)^{3}}-1\right) e^{i x \cdot \xi} \hat{u}(\xi) \sqrt{\xi}$ and take the limit $(b y D T)$ to get $\partial^{\alpha} u=\frac{1}{(\pi)^{n}} S e^{i x \cdot \xi}(i \Sigma)^{\alpha} \hat{u}(\xi) d \xi$ for $|2| \leq k$, whee $\xi^{2} \hat{u} \in L^{\prime}\left(\mathbb{R}^{n}\right)$.

We now tum to Sobolev embeddings involving other \mathbb{L}^{p} spaces. The most base result is the following:

The: (Dyads Sobolir Embedding) Let $u \in S^{\prime}\left(\mathbb{R}^{n}\right)$ be such that supp $\hat{u} \subseteq\left\{2^{k} \leq|z| \leq 2^{k+1}\right\}$, same $k \in \mathbb{Z}$. Then if $u \in L^{2}\left(\mathbb{R}^{n}\right)$ we have $u \in \mathcal{R}^{P}\left(\mathbb{R}^{n}\right)$ for $p \geqslant 2$ and $\|u\|_{L^{P}\left(\mathbb{R}_{2} \cdot\right)^{\prime}} \leqslant C\|u\|_{\left.H^{n(t-1}-\frac{1}{-}\right)}$.
pf: This is aust Bernstein's inequality, what gnus $\|u\|_{P\left(\mathbb{R}_{n}\right)^{\prime}} \leq C\left(2^{n k}\right)^{1 /-1 / p}\|u\|_{L^{2}}$, and the

* It would be me e to prove this result who the restrritian on the Fourier support of u. This would work if we cold prove something like $\|u\|_{p} \leq c_{p}\left(\sum_{k}\left\|P_{k} u\right\|_{p}^{2}\right)^{1 / 2}$ whee $\left.\widehat{P_{k} u}=P_{k}(\xi) \hat{u} \mid z\right)$ and $P_{k}(\xi)$ supportal whee $|\xi| \approx 2^{k}$, and $\Sigma P_{k}^{2} \leqslant C$.

Weill get back to this issue in a bit. For now we give a shop result using
a different idea:

Theorem: Let $q(z)=|z|^{-s}$ for $0<s<n$. Then $q^{v}(x)=c_{n, s}|x|^{s-n}$, whee $c_{n, s}=\pi^{-n / 2} 2^{-s} \frac{\Gamma\left(\frac{n-s}{2}\right)}{\Gamma(3 / 2)}$. In portralar it $u \in H^{s}$ we can write $u=\frac{1}{|x|^{n-s}} * m_{s} u$, whee $\widehat{m_{s u}}=c_{n, s}|\xi|^{s} \hat{u}(\xi)$. Thus, from $\left\|m_{s} u\right\|_{2^{2} \leq} c_{n, s}\|u\|_{H^{s}}$ and the HLS inequality we have $\|u\|_{p p} \leq C_{p}\|u\|_{H^{n}\left(K_{-}-1_{p}\right)}$ for all $2 \leq p<\infty$. (Here $C_{p} \rightarrow_{\infty}$ os $\left.p \rightarrow \infty\right)$.
pf: Recall that the definition of $I(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t$. Rescaling this gives
$c_{s}|z|^{-s}=\int_{0}^{\infty} t^{s / 2-1} e^{-t / 2|z|^{2}} d t$ when $c_{s}=2^{s / 2}\left[(s / 2)\right.$. Recall that $\left(e^{-t / 2|z|^{2}}\right)^{v}=(2 \pi)^{-n / 2} t^{-n / 2} e^{-\frac{1}{2 t}|x|^{2}}$.
Thus $\left(c_{s}|\xi|^{-s}\right)^{v}=(2 \pi)^{-n / 2} \int_{0}^{\infty} t^{\frac{s-n}{2}-1} e^{-\frac{1}{2 t}|x|^{2}} d t=(2 \pi)^{-n / 2}|x|^{s-n} 2^{n-s / 2} \int_{0}^{\infty} t^{n-s}-1 e^{-t} d t=(2 \pi)^{-n / 2} c_{n-s}|x|^{s-n}$.
Th. 3 shows $\left(\left.|z|^{-s}\right|^{v}=c_{n, s}|x|^{s-n}\right.$. The formula $u=\frac{1}{|x|^{n-s}} * M_{s} u, \hat{M} s_{s}=c_{n, s}|z|^{s} \hat{u}$ follows, at least for the case $M_{s} u \in S$, which is tore if $u \in S$ and \hat{u} Vanishes for $|\pi| \ll \mid$ and $|z| \gg \mid$.

In geneal it ut HS the $M_{s u} \in L^{2}$, so to make sense of the rest we only need to show
 $\frac{\lambda}{n}+1 / b-1 / p=1$. Applying th. 3 to $s=2$ and $\lambda=n-s$ gits $s=n(1 / 2-1 / p)$ as desired.

