Math 174 Final

December 13, 2013

- Please put your name, ID number, and sign and date.
- There are 8 problems worth a total of 200 points.
- You must show your work to receive credit.

Print Name: ₋			
Student ID: _			
Signature and	Date:		

Problem	Score
1	/25
2	/25
3	/25
4	/25
5	/25

Problem	Score
6	/25
7	/25
8	/25
Total	/200

1. (25 pts) Given the following header for a Matlab function:

$$function [x] = SolvePLU(P,L,U,b,n)$$

where P, L, U make up the PLU factorization for an $n \times n$ matrix A (PA = LU) and b is a vector, **complete** the function so that it uses the **PLU factorization** to solve the linear system Ax = b for x. Do **not** use Matlab's in-built inverse or matrix-matrix or matrix-vector multiplications.

•	2. (25 pts) Circle the best answer in each part. You do not have to show your work in this problem.								
(a)	The number of flops needed to perform LU factorization on an $n \times n$ matrix is:								
	(i) $\mathcal{O}(n)$		(ii) $\mathcal{O}(n^2)$	(iii) $\mathcal{O}(n^3)$	(iv) $\mathcal{O}(n^4)$				
(b)	Suppose runtime is mainly influenced by flops. Let A be an $n \times n$ matrix and B a $2n \times 2n$ matrix, both tridiagonal and with nonzero diagonal elements. Then each iteration of Gauss-Seidel when solving $By = c$ is this many times slower than when solving $Ax = b$:								
	(i) 2		(ii) 3	(iii) 4	(iv) 8				
(c)	(c) Suppose f is a smooth function and x_0 is a location. Let $h_1, h_2 > 0$ be two small stepsizes with $h_1 = 2h_2$. The absolute error of second order central differencing approximating $f'(x_0)$ when using h_2 is this many times smaller than when using h_1 :								
	(i) 2		(ii) 3	(iii) 4	(iv) 8				
(d)	Let $p(x)$ be a polynomial of degree 3 and let x_0, x_1, x_2, x_3, x_4 be five distinct nodes. Then the interpolating polynomial of least degree for the data points $(x_0, p(x_0)), (x_1, p(x_1)), (x_2, p(x_2)), (x_3, p(x_3)), (x_4, p(x_4))$ has this degree :								
	(i) 3		(ii) 4	(iii) 5	(iv) none of the	above			
(e)	(e) Let f be a smooth function with two roots and x_0 an initial guess. If Newton's method converges, it will always converge to the root that is closest to x_0 . TRUE or FALSE								
(f)	(f) Gauss-Seidel and Jacobi methods' sequences of approximations are exactly the same when using the same initial guess and applied to the same linear system $Ax = b$, where A is upper triangular with nonzero diagonal elements.								
	TRUE	or FA	ALSE						
(g)	(g) Trapezoid rule on a concave down function gives an underestimate of the real integral.								
	TRUE	or FA	ALSE						
(h)	Midpoint integral.	rule or	a concave	down function giv	es an underestimat e	e of the real			

TRUE or FALSE

- 3. (25 pts) For each part below, **find examples** of the specified quantities. Be sure to **justify** that your choices satisfy the listed requirements.
 - (a) Let $f(x) = x^2 4$. Come up with a **starting interval** $[a_0, b_0]$ such that $[a_2, b_2]$ generated by bisection method satisfies $a_2 \neq a_0, b_2 \neq b_0$.

(b) Come up with a **sequence** that converges to 5 with order of convergence 3.

(c) Come up with **two** different polynomials of any degree that interpolate the following data: $\frac{x \mid -1 \quad 0 \quad 1}{y \mid 1 \quad 2 \quad -1}$

(d) Come up with **three** data points with distinct nodes such that the interpolating polynomial of least degree has degree < 2.

4. (25 pts) Consider the iterative method whose sequence of approximations satisfies:

$$(2D - L)x^{(k+1)} = b + (U + D)x^{(k)},$$

for solving a linear system Ax = b, with A = D - L - U, where D is diagonal, L is strictly lower triangular, and U is strictly upper triangular. When

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix},$$

write out the **iteration matrix** and use it to determine whether this iterative method's sequence of approximations will **converge** to the solution of Ax = b for **any** initial guess.

5. (25 pts) Find a, b, c, d, f so that the following is a **free** or **natural** (S''(endpoints) = 0) **cubic spline**

$$S(x) = \begin{cases} 1 - 2x - 3x^2 + ax^3, & \text{if } -1 \le x < 2, \\ b + c(x - 2) + d(x - 2)^2 + f(x - 2)^3, & \text{if } 2 \le x \le 3 \end{cases}$$

6. (25 pts) Consider the table of data:

First write out **Newton's form** for the interpolating polynomial p(x), then use it to **approximate** f'(1).

7. (25 pts) Use **Taylor series** to find the p satisfying

$$\left| \int_0^h f(x) \, dx - \frac{h}{2} [f(0) + f(h)] \right| = \mathcal{O}(h^p).$$

8. (25 pts) Consider

$$y' = 3(t+1)y$$

with y(0) = 2. Use **one** step of **predictor-corrector** to compute $y_1 \approx y(0.1)$ with **Midpoint method**

$$y_{i+1} = y_i + hf\left(t_i + \frac{h}{2}, y_i + \frac{h}{2}f(t_i, y_i)\right)$$

as predictor and Trapezoid method

$$y_{i+1} = y_i + \frac{h}{2}(f(t_i, y_i) + f(t_{i+1}, y_{i+1}))$$

as corrector.