Math 174 Final December 13, 2013 - Please put your name, ID number, and sign and date. - There are 8 problems worth a total of 200 points. - You must show your work to receive credit. | Print Name: ₋ | | | | |--------------------------|-------|--|--| | | | | | | Student ID: _ | | | | | | | | | | Signature and | Date: | | | | Problem | Score | |---------|-------| | 1 | /25 | | 2 | /25 | | 3 | /25 | | 4 | /25 | | 5 | /25 | | Problem | Score | |---------|-------| | 6 | /25 | | 7 | /25 | | 8 | /25 | | Total | /200 | 1. (25 pts) Given the following header for a Matlab function: $$function [x] = SolvePLU(P,L,U,b,n)$$ where P, L, U make up the PLU factorization for an $n \times n$ matrix A (PA = LU) and b is a vector, **complete** the function so that it uses the **PLU factorization** to solve the linear system Ax = b for x. Do **not** use Matlab's in-built inverse or matrix-matrix or matrix-vector multiplications. | • | 2. (25 pts) Circle the best answer in each part. You do not have to show your work in this problem. | | | | | | | | | |-----|---|---------|-------------------------|--------------------------|-----------------------------|---------------|--|--|--| | (a) | The number of flops needed to perform LU factorization on an $n \times n$ matrix is: | | | | | | | | | | | (i) $\mathcal{O}(n)$ | | (ii) $\mathcal{O}(n^2)$ | (iii) $\mathcal{O}(n^3)$ | (iv) $\mathcal{O}(n^4)$ | | | | | | (b) | Suppose runtime is mainly influenced by flops. Let A be an $n \times n$ matrix and B a $2n \times 2n$ matrix, both tridiagonal and with nonzero diagonal elements. Then each iteration of Gauss-Seidel when solving $By = c$ is this many times slower than when solving $Ax = b$: | | | | | | | | | | | (i) 2 | | (ii) 3 | (iii) 4 | (iv) 8 | | | | | | (c) | (c) Suppose f is a smooth function and x_0 is a location. Let $h_1, h_2 > 0$ be two small stepsizes with $h_1 = 2h_2$. The absolute error of second order central differencing approximating $f'(x_0)$ when using h_2 is this many times smaller than when using h_1 : | | | | | | | | | | | (i) 2 | | (ii) 3 | (iii) 4 | (iv) 8 | | | | | | (d) | Let $p(x)$ be a polynomial of degree 3 and let x_0, x_1, x_2, x_3, x_4 be five distinct nodes. Then the interpolating polynomial of least degree for the data points $(x_0, p(x_0)), (x_1, p(x_1)), (x_2, p(x_2)), (x_3, p(x_3)), (x_4, p(x_4))$ has this degree : | | | | | | | | | | | (i) 3 | | (ii) 4 | (iii) 5 | (iv) none of the | above | | | | | (e) | (e) Let f be a smooth function with two roots and x_0 an initial guess. If Newton's method converges, it will always converge to the root that is closest to x_0 . TRUE or FALSE | | | | | | | | | | (f) | (f) Gauss-Seidel and Jacobi methods' sequences of approximations are exactly the same when using the same initial guess and applied to the same linear system $Ax = b$, where A is upper triangular with nonzero diagonal elements. | | | | | | | | | | | TRUE | or FA | ALSE | | | | | | | | (g) | (g) Trapezoid rule on a concave down function gives an underestimate of the real integral. | | | | | | | | | | | TRUE | or FA | ALSE | | | | | | | | (h) | Midpoint integral. | rule or | a concave | down function giv | es an underestimat e | e of the real | | | | TRUE or FALSE - 3. (25 pts) For each part below, **find examples** of the specified quantities. Be sure to **justify** that your choices satisfy the listed requirements. - (a) Let $f(x) = x^2 4$. Come up with a **starting interval** $[a_0, b_0]$ such that $[a_2, b_2]$ generated by bisection method satisfies $a_2 \neq a_0, b_2 \neq b_0$. (b) Come up with a **sequence** that converges to 5 with order of convergence 3. (c) Come up with **two** different polynomials of any degree that interpolate the following data: $\frac{x \mid -1 \quad 0 \quad 1}{y \mid 1 \quad 2 \quad -1}$ (d) Come up with **three** data points with distinct nodes such that the interpolating polynomial of least degree has degree < 2. 4. (25 pts) Consider the iterative method whose sequence of approximations satisfies: $$(2D - L)x^{(k+1)} = b + (U + D)x^{(k)},$$ for solving a linear system Ax = b, with A = D - L - U, where D is diagonal, L is strictly lower triangular, and U is strictly upper triangular. When $$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix},$$ write out the **iteration matrix** and use it to determine whether this iterative method's sequence of approximations will **converge** to the solution of Ax = b for **any** initial guess. 5. (25 pts) Find a, b, c, d, f so that the following is a **free** or **natural** (S''(endpoints) = 0) **cubic spline** $$S(x) = \begin{cases} 1 - 2x - 3x^2 + ax^3, & \text{if } -1 \le x < 2, \\ b + c(x - 2) + d(x - 2)^2 + f(x - 2)^3, & \text{if } 2 \le x \le 3 \end{cases}$$ 6. (25 pts) Consider the table of data: First write out **Newton's form** for the interpolating polynomial p(x), then use it to **approximate** f'(1). 7. (25 pts) Use **Taylor series** to find the p satisfying $$\left| \int_0^h f(x) \, dx - \frac{h}{2} [f(0) + f(h)] \right| = \mathcal{O}(h^p).$$ 8. (25 pts) Consider $$y' = 3(t+1)y$$ with y(0) = 2. Use **one** step of **predictor-corrector** to compute $y_1 \approx y(0.1)$ with **Midpoint method** $$y_{i+1} = y_i + hf\left(t_i + \frac{h}{2}, y_i + \frac{h}{2}f(t_i, y_i)\right)$$ as predictor and Trapezoid method $$y_{i+1} = y_i + \frac{h}{2}(f(t_i, y_i) + f(t_{i+1}, y_{i+1}))$$ as corrector.