Math 174 Final

December 7, 2016

- Please put your name, ID number, and sign and date.
- There are 8 problems worth a total of 200 points.
- You must show your work to receive credit.

Print Name: \qquad

Student ID: \qquad

Signature and Date: \qquad

Problem	Score
1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 25$
5	

Problem	Score
6	$/ 25$
7	$/ 25$
8	$/ 25$
Total	

1. (25 pts) Consider the ODE $x^{\prime}=f(t, x)$, with $x\left(t_{0}\right)=x_{0}$. Suppose we have available for use a Matlab function with header

$$
\text { function }[\text { value }]=\mathrm{f}(\mathrm{t}, \mathrm{x})
$$

that evaluates the function $f(t, x)$. Now, given the following header for a Matlab function:
function $[\mathrm{xN}]=$ predictorcorrector $(\mathrm{t} 0, \mathrm{x} 0, \mathrm{~h}, \mathrm{~N})$
complete this function so that it performs predictor-corrector, using Midpoint method for predictor and Trapezoid method for corrector, with inputs $t_{0}=t 0$, $x_{0}=x 0$, and stepsize h, to output the approximation x_{N}.
Use only basic programming, such as for loops and if statements, and do not use any of Matlab's vector-vector or matrix-vector operations. Remember: Midpoint method

$$
x_{i+1}=x_{i}+h f\left(t_{i}+\frac{h}{2}, x_{i}+\frac{h}{2} f\left(t_{i}, x_{i}\right)\right)
$$

and Trapezoid method

$$
x_{i+1}=x_{i}+\frac{h}{2}\left(f\left(t_{i}, x_{i}\right)+f\left(t_{i+1}, x_{i+1}\right)\right) .
$$

2. (25 pts) Let g be continuously differentiable and suppose there exists a $0<\lambda<1$ such that $\left|g^{\prime}(x)\right| \leq \lambda$ for all x real numbers. Suppose p is a fixed point of g, and let $p_{i+1}=g\left(p_{i}\right)$ give fixed point iterations for an initial guess p_{0}. Show p_{i} converges to p. Do not use fixed point theorem on convergence, since you are being asked to prove it in a special case. Remember: Mean value theorem

$$
f(x)-f(y)=f^{\prime}(\xi)(x-y)
$$

for some ξ between x and y.
3. (25 pts) Use Taylor series to find p, k, and $C \neq 0$ such that:

$$
f^{\prime}(x)-\frac{-f(x+2 h)+4 f(x+h)-3 f(x)}{2 h}=C h^{p} f^{(k)}(x)+\mathcal{O}\left(h^{p+1}\right),
$$

for h small. Remember:

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots
$$

4. (25 pts) Consider the linear system $A x=b$, with $A=D-L-U$ nonsingular, where D is diagonal and nonsingular, L is strictly lower triangular, and U is strictly upper triangular. Consider the iterative method whose sequence of approximations satisfies:

$$
x^{(k+1)}=(D-U)^{-1} L x^{(k)}+(D-U)^{-1} b
$$

When

$$
A=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]
$$

write out the iteration matrix and use it to determine whether this iterative method's sequence of approximations will converge to the solution of $A x=b$ for any initial guess. Remember:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right] .
$$

5. (25 pts) Solve the following short problems.
(a) Perform Gaussian elimination with partial pivoting with back substitution, as if in a 2-digit rounding machine, to solve the linear system

$$
\left\{\begin{aligned}
x_{1}+2 x_{2} & =2 \\
-3 x_{1}+3 x_{2} & =1
\end{aligned}\right.
$$

(b) Let $x_{i}, i=0, \ldots, 20$ be evenly spaced nodes from $x_{0}=-1$ to $x_{20}=1$. With $y_{i}=1+x_{i}^{2}$, let $p(x)$ be the piecewise linear interpolant for the data points $\left(x_{i}, y_{i}\right), i=0, \ldots, 20$. Find $p(0.17)$.
6. (25 pts) Solve the following short problems.
(a) Find a, B, D so that the following is a free or natural $\left(S^{\prime \prime}(\right.$ endpoints $\left.)=0\right)$ cubic spline

$$
S(x)= \begin{cases}2-5 x-3 x^{2}+a x^{3}, & \text { if }-1 \leq x<0 \\ D-5 x+B x^{2}+x^{3}, & \text { if } 0 \leq x \leq 1\end{cases}
$$

(b) Consider the ODE system

$$
\left\{\begin{array}{l}
y^{\prime}(t)=y(t)+z(t)+t \\
z^{\prime}(t)=\operatorname{ty}(t)-z(t)
\end{array}\right.
$$

with initial conditions $y(3)=y_{0}, z(3)=z_{0}$. Use Euler's method with stepsize $h=0.1$ and initial guesses $y_{0}=1, z_{0}=2$ to solve for y_{1} and z_{1}. Remember Euler's method:

$$
x_{i+1}=x_{i}+h f\left(t, x_{i}\right) .
$$

7. (25 pts) Let $\left(x_{i}, y_{i}\right), i=0, \ldots, n$, be $n+1$ data points with distinct nodes. Let $p(x)$ and $q(x)$ be polynomials of degree $\leq n$ that interpolate the data points. Prove $p \equiv q$.
8. (25 pts) Given the function $f(x)$, consider the data points $(a-2 h, f(a-2 h)),(a-$ $h, f(a-h)),(a, f(a))$. Write down the Lagrange form of the interpolating polynomial for these data points. Then use it to approximate $f^{\prime}(a)$, writing your result in the form

$$
\frac{A f(a-2 h)+B f(a-h)+C f(a)}{h}
$$

for constants A, B, C.

