Math 274 Final

December 13, 2013

- Please put your name, ID number, and sign and date.
- There are 2 problems worth a total of 50 points.
- You must show your work to receive credit.

Print Name: \qquad

Student ID: \qquad

Signature and Date: \qquad

Problem	Score
1	$/ 25$
2	$/ 25$
Total	$/ 50$

1. $(25 \mathrm{pts})$ Let A be an $n \times n$ symmetric matrix. Let $B=\left(b_{i j}\right)$ denote the results of A after one step of Gaussian elimination (so $b_{i 1}=0$ for $i=2, \ldots, n$). Prove $b_{i j}=b_{j i}$ for all $i, j=2, \ldots, n$.
2. (25 pts) Prove the uniqueness of polynomials of degree ≤ 3 satisfying

x	x_{0}	x_{1}
$f(x)$	y_{0}	y_{1}
$f^{\prime}(x)$	z_{0}	z_{1}

when $x_{0} \neq x_{1}$.

