Math 274 Final

December 7, 2016

- Please put your name, ID number, and sign and date.
- There are 2 problems worth a total of 50 points.
- You must show your work to receive credit.

Print Name: _____

Student ID: _____

Signature and Date: _____

Problem	Score
1	/25
2	/25
Total	/50

1. (25 pts) Let a function g in [a, b] be called strictly convex if, for any subinterval $[c, d] \subseteq [a, b]$, the line L passing through the two points (c, g(c)), (d, g(d)) satisfies L(x) > g(x) for all $x \in (c, d)$. Suppose f(x) is a strictly convex function that is continuous in [a, b], a < b, such that f(a) < 0 and f(b) > 0. Let $[a_i, b_i]$ denote the interval constructed by the method of false position at the *i*th step, for $i = 0, 1, \ldots$ If the initial interval $[a_0, b_0] = [a, b]$, prove $b_i = b$ for all i.

2. (25 pts) Let Ax = b, where A is a nonsingular $n \times n$ matrix and b a nonzero $n \times 1$ vector. Also let $(A + \delta A)(x + \delta x) = b + \delta b$, where $A + \delta A$ is nonsingular. Suppose $|| \cdot ||$ is a natural norm and $||\delta A|| < 1/||A^{-1}||$. Prove

$$\frac{||\delta x||}{||x||} \le \frac{\kappa(A)}{1 - \kappa(A)(||\delta A||/||A||)} \left(\frac{||\delta b||}{||b||} + \frac{||\delta A||}{||A||}\right).$$