Math 274 Final

December 7, 2016

- Please put your name, ID number, and sign and date.
- There are 2 problems worth a total of 50 points.
- You must show your work to receive credit.

Print Name: \qquad

Student ID: \qquad

Signature and Date: \qquad

Problem	Score
1	$/ 25$
2	$/ 25$
Total	$/ 50$

1. (25 pts) Let a function g in $[a, b]$ be called strictly convex if, for any subinterval $[c, d] \subseteq[a, b]$, the line L passing through the two points $(c, g(c)),(d, g(d))$ satisfies $L(x)>g(x)$ for all $x \in(c, d)$. Suppose $f(x)$ is a strictly convex function that is continuous in $[a, b], a<b$, such that $f(a)<0$ and $f(b)>0$. Let $\left[a_{i}, b_{i}\right]$ denote the interval constructed by the method of false position at the i th step, for $i=0,1, \ldots$ If the initial interval $\left[a_{0}, b_{0}\right]=[a, b]$, prove $b_{i}=b$ for all i.
2. (25 pts) Let $A x=b$, where A is a nonsingular $n \times n$ matrix and b a nonzero $n \times 1$ vector. Also let $(A+\delta A)(x+\delta x)=b+\delta b$, where $A+\delta A$ is nonsingular. Suppose $\|\cdot\|$ is a natural norm and $\|\delta A\|<1 /\left\|A^{-1}\right\|$. Prove

$$
\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)(\|\delta A\| /\|A\|)}\left(\frac{\|\delta b\|}{\|b\|}+\frac{\|\delta A\|}{\|A\|}\right) .
$$

