Homework #1

- 1. Suppose we have a computer that performs 3-digit rounding. Find the absolute and relative errors for the following numbers computed in the computer:
 - (a) 0.000224729
 - (b) 42381900
 - (c) 2012.34 + 3.114
 - (d) $2.728 \cdot 0.0036$
 - (e) 0.3856121 0.3840256
- 2. Prove k-digit rounding of any real number x leads to a floating point number fl(x) with relative error $< 5 \cdot 10^{-k}$.
- 3. In a computer that performs 4-digit rounding, find examples of the following:
 - (a) Positive real numbers a, b such that fl(fl(a) fl(b)) has absolute error $\leq 10^{-5}$ but relative error $\geq 90\%$.
 - (b) Positive real numbers a, b such that fl(fl(a) fl(b)) has absolute error $\geq 10^5$ but relative error $\leq 10\%$.
- 4. Let $u = 5 \cdot 10^{-k}$, so the relative error of k-digit rounding of any real number is $\leq u$. We of course take $k \geq 1$, so note u < 1. Given positive, real numbers x, y, show x + y, performed in a k-digit rounding machine, has relative error $\leq 2u + \mathcal{O}(u^2)$.
- 5. (a) Prove, using the Intermediate Value Theorem, that there is a root of $f(x) = x^2 3$ in the interval [1, 2].
 - (b) Starting with this interval, draw a description of the bisection method on f(x), labeling the approximations p_1, p_2, p_3 .
 - (c) Compute the values of p_1, p_2, p_3 .
 - (d) Determine a bound on the absolute error of p_4 without computing p_4 . Then compute p_4 and determine the actual absolute error (using the actual exact solution computed by calculator or computer). Does it satisfy the bound?
- 6. Suppose f is continuous and f(x) < 0 in [-1,2], and f(x) > 0 in [2.5,4]. Using the bisection method on f(x) with starting interval [-1,4], compute the values of p_1, p_2, p_3 .
- 7. Suppose f is continuos in [-3,2] and f(-3) < 0 and f(2) > 0.
 - (a) Let p_{15} be bisection method's approximation, applied to f(x) with starting interval [-3, 2], after 15 iterations. Bound the absolute error of this approximation without computing p_{15} .
 - (b) Use error bounds to determine n such that the absolute error of p_n is guaranteed to be $\leq 10^{-12}$.

8. (Matlab)

- (a) Using the "cos" command in Matlab, write a Matlab function that inputs a number x and outputs the value $\cos x x$. Print out or write out the function.
- (b) Write a Matlab function that inputs the endpoints of a starting interval a, b and the number N and outputs the bisection method's p_N approximation of the root for the function in part (a). Print out or write out the function.
- (c) Run your program for the starting interval $[0, \pi/2]$ (use "pi" for π) and write down the values of p_1, p_5, p_{10}, p_{20} .
- 9. (Math 274) Suppose we have a k-digit rounding machine. Let $u=5\cdot 10^{-k}$, so the relative error of k-digit rounding of any real number is $\leq u$. We of course take $k\geq 1$, so note u<1.
 - (a) If x_i are real numbers, show $\prod_{x=1}^n x_i$, performed in the machine, has relative error bounded by $(2n-1)u + \mathcal{O}(u^2)$.
 - (b) If $x_i > 0$ are positive floating point numbers, show $((x_1 + x_2) + x_3) + x_4$, performed in the machine, has relative error bounded by $3u + \mathcal{O}(u^2)$. Guess an analogous result for

$$((((((((x_1+x_2)+x_3)+x_4)+x_5)+x_6)+x_7)+x_8.$$

(c) If $x_i > 0$ are positive floating point numbers, show $(x_1 + x_2) + (x_3 + x_4)$, performed in the machine, has relative error bounded by $2u + \mathcal{O}(u^2)$. Guess an analogous result for

$$((x_1+x_2)+(x_3+x_4))+((x_5+x_6)+(x_7+x_8)).$$