Homework \#3

1. (b) Using secant method formula,

$$
p_{2}=p_{1}-\frac{f\left(p_{1}\right)\left(p_{1}-p_{0}\right)}{f\left(p_{1}\right)-f\left(p_{0}\right)}=1-\frac{(-1)(-1)}{-1-2}=\frac{4}{3} \approx 1.33333333333333
$$

and

$$
p_{3}=p_{2}-\frac{f\left(p_{2}\right)\left(p_{2}-p_{1}\right)}{f\left(p_{2}\right)-f\left(p_{1}\right)}=\frac{4}{3}-\frac{(-2 / 9)(1 / 3)}{-2 / 9+1}=\frac{10}{7} \approx 1.42857142857143
$$

and

$$
p_{4}=p_{3}-\frac{f\left(p_{3}\right)\left(p_{3}-p_{2}\right)}{f\left(p_{3}\right)-f\left(p_{2}\right)}=\frac{10}{7}-\frac{(2 / 49)(2 / 21)}{2 / 49+2 / 9}=\frac{41}{29} \approx 1.41379310344828
$$

3. (b) First, Newton's method gives us:

$$
\begin{aligned}
& p_{1} \approx 0.05123933030278592 \\
& p_{2} \approx 0.02594642975690419 \\
& p_{3} \approx 0.01305718390501691 \\
& p_{4} \approx 0.00654987994478523
\end{aligned}
$$

We compute the ratios $\left|p_{n+1}\right| /\left|p_{n}\right|$:

$$
\begin{aligned}
& \left|p_{1}\right| /\left|p_{0}\right| \approx 0.512393303027859 \\
& \left|p_{2}\right| /\left|p_{1}\right| \approx 0.506377222410603 \\
& \left|p_{3}\right| /\left|p_{2}\right| \approx 0.503236245886295 \\
& \left|p_{4}\right| /\left|p_{3}\right| \approx 0.501630366274354,
\end{aligned}
$$

which look like they are converging to 0.5 . Thus Newton's method looks to be linearly convergent to 0 , with asymptotic error constant 0.5 . On the other hand, we compute the ratios $\left|p_{n+1}\right| /\left|p_{n}\right|^{2}$:

$$
\begin{aligned}
& \left|p_{1}\right| /\left|p_{0}\right|^{2} \approx 5.12393303027859 \\
& \left|p_{2}\right| /\left|p_{1}\right|^{2} \approx 9.88258861734325 \\
& \left|p_{3}\right| /\left|p_{2}\right|^{2} \approx 19.3952019835171 \\
& \left|p_{4}\right| /\left|p_{3}\right|^{2} \approx 38.4179597931231
\end{aligned}
$$

which do not look to be converging, or perhaps are converging to ∞. Thus Newton's method does not look to be quadratically convergent to 0 .
7. (a) Note,

$$
\begin{aligned}
& p(1)=f(1) \frac{(1-2)(1-3)}{(1-2)(1-3)}+0+0=f(1)=4 \\
& p(2)=0+f(2) \frac{(2-1)(2-3)}{(2-1)(2-3)}+0=f(2)=3 \\
& p(3)=0+0+f(3) \frac{(3-1)(3-2)}{(3-1)(3-2)}=f(3)=1,
\end{aligned}
$$

so p interpolates the data points $(1,4),(2,3),(3,1)$. Simplified,

$$
p(x)=2\left(x^{2}-5 x+6\right)-3\left(x^{2}-4 x+3\right)+\frac{1}{2}\left(x^{2}-3 x+2\right)=-\frac{1}{2} x^{2}+\frac{1}{2} x+4 .
$$

(b) Thus, p has two roots of

$$
x=\frac{-(1 / 2) \pm \sqrt{1 / 4+8}}{-1}=\frac{1}{2} \mp \frac{\sqrt{33}}{2} .
$$

(c) Muller's method will take, as p_{3}, the root closer to $p_{2}=3$. Note

$$
\left|\frac{1}{2}-\frac{\sqrt{33}}{2}-3\right| \approx 5.37228132326901
$$

and

$$
\left|\frac{1}{2}+\frac{\sqrt{33}}{2}-3\right| \approx 0.372281323269014
$$

so $p_{3}=\frac{1}{2}+\frac{\sqrt{33}}{2}$.
8. (Matlab)
(a) See "hw3afn.m".
(b) We get $p_{2}=0.611015470351657$ and $p_{5}=0.738877768847912$ and $p_{10}=0.739085129248206$.
9. (Math 274)
(a) Suppose $p<q \in[a, b]$ are two roots of f. Note

$$
L(x)=\frac{-f(a)}{q-a}(x-q)
$$

is the line passing through $(a, f(a)),(q, 0)$, and $L(x)<0$ for $x \in[a, q)$. Now f strictly convex implies $L(x)>f(x)$ in (a, q). Note $p \neq a$ since $f(a)<0$, and $p \in(a, q)$ implies $L(p)>f(p)=0$, which contradicts $L(p)<0$. Thus, there cannot be two different roots of f in $[a, b]$.
Now f continuous means, by the Intermediate Value Theorem, f has a root in (a, b). So f has a unique root in $[a, b]$.
(b) Let L be the line passing through $\left(p_{0}, f\left(p_{0}\right)\right),\left(p_{1}, f\left(p_{1}\right)\right)$. Then $p_{2} \in(a, b)$ is the root of L. But $L(x)>f(x)$ for $x \in(a, b)$, so $f\left(p_{2}\right)<0$. The Intermediate Value Theorem says a root of f has to be in $\left(p_{2}, b\right)$. Since f has a unique root in (a, b), this root is p, and $p \in\left(p_{2}, b\right)$. This implies $p>p_{2}$.

