Homework \#3

1. (b) Plugging in data points, we get the system of linear equations:

$$
\begin{aligned}
a & =2 \\
b & =3 \\
c & =-2 .
\end{aligned}
$$

So

$$
p(x)=\frac{1}{3}(x-1)(x-2)-\frac{3}{2}(x+1)(x-2)-\frac{2}{3}(x+1)(x-1) .
$$

(c) Plugging in data points, we get the system of linear equations:

$$
\begin{aligned}
a & =2 \\
a+2 b & =3 \\
a+3 b+3 c & =-2 .
\end{aligned}
$$

Solving from top to bottom, $a=2$ and $b=(3-2) / 2=1 / 2$ and $c=(-2-2-$ $3 / 2) / 3=-11 / 6$. So

$$
p(x)=2+\frac{1}{2}(x+1)-\frac{11}{6}(x+1)(x-1) .
$$

3. (a) The Lagrange form of the Lagrange polynomial takes the form:

$$
\begin{aligned}
p(x)= & f\left(x_{0}-h\right) \frac{\left(x-x_{0}\right)\left(x-x_{0}-h\right)}{(-h)(-2 h)}+f\left(x_{0}\right) \frac{\left(x-x_{0}+h\right)\left(x-x_{0}-h\right)}{(h)(-h)}+ \\
& f\left(x_{0}+h\right) \frac{\left(x-x_{0}+h\right)\left(x-x_{0}\right)}{(2 h)(h)} \\
= & f\left(x_{0}-h\right) \frac{\left(x-x_{0}\right)\left(x-x_{0}-h\right)}{2 h^{2}}-f\left(x_{0}\right) \frac{\left(x-x_{0}+h\right)\left(x-x_{0}-h\right)}{h^{2}}+ \\
& f\left(x_{0}+h\right) \frac{\left(x-x_{0}+h\right)\left(x-x_{0}\right)}{2 h^{2}} .
\end{aligned}
$$

(b) Taking a derivative, plugging in x_{0}, and simplifying:

$$
\begin{aligned}
p^{\prime}\left(x_{0}\right) & =f\left(x_{0}-h\right) \frac{-h}{2 h^{2}}-f\left(x_{0}\right) \frac{-h+h}{h^{2}}+f\left(x_{0}+h\right) \frac{h}{2 h^{2}} \\
& =-\frac{f\left(x_{0}-h\right)}{2 h}+\frac{f\left(x_{0}+h\right)}{2 h} \\
& =\frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h} .
\end{aligned}
$$

4. (a) The divided difference table looks like:

13
(b) iii. The Newton form for the Lagrange polynomial is:

$$
p(x)=-2+2(x+1)+\frac{1}{2}(x+1) x .
$$

6. (Matlab)
(a) See "hw4afn.m".
(b) The function gives an approximation of 1.57222222222222 for $f(2)$.
7. (Math 274) Given p, q two polynomials of degree ≤ 3 interpolating the data, let $r=$ $p-q$, a polynomial of degree ≤ 3. Then $r^{\prime}=p^{\prime}-q^{\prime}$, a polynomial of degree ≤ 2. From the data, $r^{\prime}\left(x_{i}\right)=p^{\prime}\left(x_{i}\right)-q^{\prime}\left(x_{i}\right)=z_{i}-z_{i}=0$, for $i=0,1$, so, since $x_{0} \neq x_{1}, r^{\prime}$ has at least 2 roots. In addition, $r\left(x_{i}\right)=p\left(x_{i}\right)-q\left(x_{i}\right)=y_{i}-y_{i}=0$, for $i=0$, 1 , so r has roots at x_{0}, x_{1}. Thus, by Rolle's Theorem, r^{\prime} has a root at some ξ between x_{0}, x_{1}. So r^{\prime} has at least three roots: x_{0}, x_{1}, ξ. But this is more than its degree, so Fundamental Theorem of Algebra implies $r^{\prime} \equiv 0$. Integrating, r is a constant function, and, since it has roots at the nodes, $r \equiv 0$ and $p \equiv q$.
