Homework \#5

3. (a) The divided difference table is

$$
\begin{array}{ll}
-1 & 0
\end{array}
$$

1

$\begin{array}{llll}1 & 2 & -1\end{array}$
-1
12
Then $p(x)=(x+1)-\frac{1}{2}(x+1)^{2}(x-1)$.
(b) The divided difference table is
-1 0
1

-1	0		0			
1	2		1		$-\frac{1}{2}$	
1	2		-1		-1	$-\frac{1}{2}$

$\begin{array}{llll}0 & 1 & -1\end{array}$
2
01
Then $p(x)=(x+1)-\frac{1}{2}(x+1)^{2}(x-1)-\frac{1}{2}(x+1)^{2}(x-1)^{2}+\frac{1}{2}(x+1)^{2}(x-1)^{2} x$.
4. Let p be the polynomial interpolating the data. Then $p\left(x_{i}\right)=f\left(x_{i}\right)$, for $i=0,1,2,3$, gives 4 equations; and $p^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)$, for $i=0,1,2$ gives 3 more equations; and $p^{\prime \prime}\left(x_{i}\right)=f^{\prime \prime}\left(x_{i}\right)$, for $i=0,1$ gives 2 more equations; and $p^{\prime \prime \prime}\left(x_{0}\right)=f^{\prime \prime \prime}\left(x_{0}\right)$ gives 1 more equation. This totals to 10 equations. Writing

$$
p(x)=a_{0}+a_{1} x+\ldots+a_{d} x^{d},
$$

we see p has the $d+1$ unknowns: a_{0}, \ldots, a_{d}. Matching equations with unknowns, we take $d+1=10$, or $d=9$.
7. $S^{\prime}(0)=S_{0}^{\prime}(0)=-1$ implies $b=-1$; and $S_{0}(1)=S_{1}(1)=1$ implies $a+b+c+d=1$; and $S_{0}^{\prime}(1)=S_{1}^{\prime}(1)=1$ implies $b+2 c+3 d=1$; and $S_{0}^{\prime \prime}(1)=S_{1}^{\prime \prime}(1)=2$ implies $2 c+6 d=2$. Thus, $2 c+3 d=2$, so $d=0$; so $c=1$; so $a=1$.
8. (Matlab)
(a) See "hw5afn.m".
(b) The function gives a result of 0.649630271332711 .
9. (Math 274) Let x be a fixed point. If $x=x_{k}$, then $f(x)=p(x)$ and the formula holds. If $x \neq x_{k}$, for any k, then we define the function

$$
g(t)=f(t)-p(t)-(f(x)-p(x)) \frac{\prod_{i=0}^{n}\left(t-x_{i}\right)^{2}}{\prod_{i=0}^{n}\left(x-x_{i}\right)^{2}},
$$

so that g has roots at all the nodes x_{i} and at point x. Let

$$
y_{0}<y_{1}<\ldots<y_{n+1}
$$

such that each y_{i} is either a node or x. Then Rolle's Theorem says g^{\prime} has roots in $\left(y_{i}, y_{i+1}\right)$, for each $i=0, \ldots, n$. Additionally, g^{\prime} has roots at each of the nodes x_{i}. Thus we count at least $(n+1)+(n+1)=2 n+2$ roots for g^{\prime}. Note $f \in C^{2 n+2}[a, b]$ implies $g \in C^{2 n+2}[a, b]$ so, by Generalized Rolle's Theorem, there exists $\xi(x) \in[a, b]$ such that $\left(g^{\prime}\right)^{(2 n+1)}(\xi(x))=0$. Thus, noting $p^{(2 n+2)} \equiv 0$, since p is degree $\leq 2 n+1$,

$$
\begin{aligned}
0 & =g^{(2 n+2)}(\xi(x)) \\
& =f^{(2 n+2)}(\xi(x))-(f(x)-p(x)) \frac{(2 n+2)!}{\prod_{i=0}^{n}\left(x-x_{i}\right)^{2}}
\end{aligned}
$$

Solving, we get

$$
f(x)-p(x)=\frac{f^{(2 n+2)}(\xi(x))}{(2 n+2)!} \prod_{i=0}^{n}\left(x-x_{i}\right)^{2} .
$$

