Homework \#7

1. Consider the table of values

x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}
y	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}

with $x_{i}=i / 4$ and $y_{i}=4 /\left(1+x_{i}^{2}\right)$.
(a) Use composite trapezoidal rule to approximate the integral. What is the exact absolute error given that the exact value is π ?
(b) Use instead Simpson's rule. What is the exact absolute error?
(c) Use Simpson's rule on the table with more values:

x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
y	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}

with $x_{i}=i / 8$ and $y_{i}=4 /\left(1+x_{i}^{2}\right)$. How many times smaller is the exact absolute error compared to the results in part (b)?
2. Use Taylor series to show

$$
\int_{0}^{h} f(x) d x-h f(h / 2)=\mathcal{O}\left(h^{3}\right) .
$$

3. Let

$$
I=\int_{a}^{b} f(x) d x
$$

and let $T(h)$ denote composite trapezoidal rule approximating I using stepsize h. Assume error formula

$$
I=T(h)+C_{2} h^{2}+C_{4} h^{4}+C_{6} h^{6}+\ldots
$$

(a) Use Richardson extrapolation with stepsizes h and $2 h$ to derive Simpson's rule.
(b) (not due) Use Richardson extrapolation with stepsizes $h, 2 h, 4 h$ to write out the $\mathcal{O}\left(h^{6}\right)$ approximation formula.
4. Consider the ODE

$$
y^{\prime}=-2 t y
$$

with $y(0)=2$. The exact solution is $y(t)=2 e^{-t^{2}}$.
(a) Use Euler's method with stepsize $h=0.5$ to approximate $y(1)$ and find the absolute error $E(0.5)$ of this approximation.
(b) Use Euler's method with stepsize $h=0.25$ to approximate $y(1)$ and find the absolute error $E(0.25)$ of this approximation.
(c) Compute $E(0.5) / E(0.25)$.
5. (not due) Use Trapezoid Method with stepsize $h=0.5$ to solve the ODE

$$
y^{\prime}=t / y
$$

for $y(2)$ given $y(1)=2$.
6. (not due) Consider the ODE

$$
y^{\prime}=-2 t y
$$

with $y(0)=2$. The exact solution is $y(t)=2 e^{-t^{2}}$.
(a) Use Midpoint method with stepsize $h=0.5$ to approximate $y(1)$ and find the absolute error $E(0.5)$ of this approximation.
(b) Use Midpoint method with stepsize $h=0.25$ to approximate $y(1)$ and find the absolute error $E(0.25)$ of this approximation.
(c) Compute $E(0.5) / E(0.25)$.
7. (Matlab)
(a) For a given $f(t, y)$, write a Matlab function that inputs t, y, and outputs the vaue of $f(t, y)$. Then write a Matlab function that inputs:

- t_{0} and w_{0};
- stepsize h;
- number of iterations N;
and uses the Midpoint method, with stepsie h, to solve the ODE

$$
y^{\prime}=f(t, y)
$$

with initial value $y\left(t_{0}\right)=w_{0}$, and outputs approximation w_{N}. Write out or print out this latter function.
(b) Apply your function to the case where $f(t, y)=\sin t+y, t_{0}=0, w_{0}=1$, and $(h, N)=(0.5,2)$ and $(h, N)=(0.05,20)$ and $(h, N)=(0.01,100)$. Write out or print out your results in each case.
8. (Math 274) Consider, for $\lambda>0$,

$$
y^{\prime}=-\lambda y,
$$

with $y(0)=w_{0} \neq 0$. The exact solution is $y(t)=w_{0} e^{-\lambda t}$, and $\lim _{t \rightarrow \infty} y(t)=0$.
(a) Apply Euler's method to the ODE and write down the approximation w_{n} in terms of w_{0}.
(b) For what h does $\lim _{n \rightarrow \infty} w_{n}=0$? What happens to $\lim _{n \rightarrow \infty} w_{n}$ for other $h>0$?
(c) Similarly analyze the case $\lambda<0$: what is $\lim _{t \rightarrow \infty} y(t)$ and when does $\lim _{n \rightarrow \infty} w_{n}$ satisfy similar results?

