Homework \#8

1. Use Euler's method as predictor and Trapezoid Method as corrector with $h=0.5$ to solve the ODE

$$
y^{\prime}=\sin y
$$

for $y(1)$ given $y(0)=1$.
2. Use Euler's method with stepsize $h=0.25$ to solve the system of ODE's

$$
\begin{aligned}
y^{\prime} & =-z \\
z^{\prime} & =y
\end{aligned}
$$

for $y(1), z(1)$ given $y(0)=1, z(0)=0$.
3. (a) Write out each step of Gaussian elimination (without pivoting) on the augmented matrix for the linear system

$$
\left\{\begin{aligned}
2 x-3 y+z & =1 \\
x+y-z & =2 \\
-4 x+4 z & =-1
\end{aligned}\right.
$$

(b) Now use back substitution to solve for x, y, z.
4. (a) Count the number of additions/subtractions needed to perform back substitution on $U x=b$, where U is upper triangular, from the formula

$$
x_{i}=\left[b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right] / u_{i i}
$$

(b) Also count the number of multiplications/divisions.
5. Prove one step of Gaussian elimination (without pivoting) on an $n \times n$ symmetric matrix A with $a_{11} \neq 0$ produces a matrix B such that $B(2: n, 2: n)$ is symmetric.
6. (a) Give an example of a 2×2 matrix that doesn't have an $L U$ factorization.
(b) Use Gaussian elimination (without pivoting) to find the $L U$ factorization of the matrix

$$
A=\left[\begin{array}{cccc}
-2 & 0 & 1 & -1 \\
-1 & 2 & 0 & 1 \\
4 & -1 & -2 & -4 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

(c) Use the $L U$ factorization and forward and back substitution to solve the linear system $A x=b$, where $b=[0,1,2,3]^{T}$.
7. (a) Count the number of additions/subtractions and multiplications/divisions it takes to get the LU factorization (assuming it exists) of a tridiagonal $n \times n$ matrix (taking advantage of all the zeros). Thus, how many times longer does it take to compute the LU factorization of a $2 n \times 2 n$ tridiagonal matrix compared to a $n \times n$ tridiagonal matrix?
(b) Count the number of additions/subtractions and multiplications/divisions it takes to perform forward and back substitution to solve $L U x=b$, using the LU factorization a tridiagonal $n \times n$ matrix (assuming it exists and taking advantage of all the zeros).
8. (Matlab)
(a) Write a Matlab function that inputs the dimension n and a $n \times n$ matrix A, performs finds the LU factorization of A (stored in a single matrix), and outputs the number of flops used. Print out or write out your function.
(b) Apply your function to $10 \times 10,20 \times 20,100 \times 100$, and 200×200 matrices and print out your results in each case.
9. (Math 274) An $n \times n$ matrix A is strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

for all $i=1, \ldots, n$. Prove Gaussian elimination (without pivoting) on a strictly diagonally dominant matrix produces a strictly diagonally dominant upper triangular matrix.

