Homework \#8

1. Euler's method gives

$$
w_{1}^{*}=w_{0}+h \sin w_{0}=1+0.5 \sin 1=1.42073549240395 .
$$

Then Trapezoid method gives

$$
w_{1}=w_{0}+\frac{h}{2}\left[\sin w_{0}+\sin w_{1}^{*}\right]=1+0.25[\sin 1+\sin 1.42073549240395]=1.45755824248413
$$

Continuing, we get

$$
\begin{aligned}
w_{2}^{*} & =w_{1}+h \sin w_{1}=1.45755824248413+0.5 \sin 1.45755824248413=1.95435595062392 \\
w_{2} & =w_{1}+\frac{h}{2}\left[\sin w_{1}+\sin w_{2}^{*}\right] \\
& =1.45755824248413+0.25 *[\sin 1.45755824248413+\sin 1.95435595062392] \\
& =1.93779170093176 .
\end{aligned}
$$

This w_{2} is the approximation for $y(1)$.
4. (a) Note

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i} .
$$

In the numerator, $1+n-i$ real numbers are being added together at one time, which requires $n-i$ additions/subtractions. Thus, adding together all these additions/subtractions for $i=1, \ldots, n$, we get

$$
\sum_{i=1}^{n} n-i=\sum_{k=0}^{n-1} k,
$$

where $k=n-i$. This simplifies to $n(n-1) / 2$ additions/subtractions.
(b) Note

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i} .
$$

In the numerator, there are $n-i$ multiplications. Then there is 1 division, for a total of $n-i+1$ multiplications/divisions. Thus, adding together all these multiplications/divisions for $i=1, \ldots, n$, we get

$$
\sum_{i=1}^{n} n-i+1=\sum_{m=1}^{n} m
$$

where $m=n-i+1$. This simplifies to $n(n+1) / 2$ multiplications/divisions.
5. A symmetric means $a_{i j}=a_{j i}$ for all $i, j=1, \ldots, n$. We will prove $b_{i j}=b_{j i}$ for all $i, j=2, \ldots n$. We get

$$
\begin{aligned}
b_{i j} & =a_{i j}-\frac{a_{1 j}}{a_{11}} a_{i 1} \\
& =a_{j i}-\frac{a_{j 1}}{a_{11}} a_{1 i} \\
& =a_{j i}-\frac{a_{1 i}}{a_{11}} a_{j 1} \\
& =b_{j i} .
\end{aligned}
$$

8. (Matlab)
(a) See "hw8afn.m".
(b) For $n=10$, we get 615 flops; for $n=20$, we get 5130 flops; for $n=100$, we get 661650 flops; and for $n=200$, we get 5313300 flops.
9. (Math 274) We first prove the result for the first step of Gaussian elimination. Let B be the matrix after the first step of Gaussian elimination. Note $b_{1 j}=a_{1 j}$, for all j, so

$$
\sum_{j=2}^{n}\left|b_{1 j}\right|=\sum_{j=2}^{n}\left|a_{1 j}\right|<\left|a_{11}\right|=\left|b_{11}\right| .
$$

For $i=2, \ldots, n$, note $b_{i 1}=0$. So

$$
\begin{aligned}
\sum_{j=1, j \neq i}^{n}\left|b_{i j}\right| & =\sum_{j=2, j \neq i}^{n}\left|b_{i j}\right| \\
& =\sum_{j=2, j \neq i}^{n}\left|a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j}\right| \\
& \leq \sum_{j=2, j \neq i}^{n}\left[\left|a_{i j}\right|+\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 j}\right|\right] \\
& =\sum_{j=2, j \neq i}^{n}\left|a_{i j}\right|+\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|} \sum_{j=2, j \neq i}^{n}\left|a_{1 j}\right| \\
& =\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|-\left|a_{i 1}\right|+\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left(\sum_{j=2}^{n}\left|a_{1 j}\right|-\left|a_{1 i}\right|\right) \\
& <\left|a_{i i}\right|-\left|a_{i 1}\right|+\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left(\left|a_{11}\right|-\left|a_{1 i}\right|\right) \\
& =\left|a_{i i}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right| \\
& \leq\left|a_{i i}-\frac{a_{i 1}}{a_{11}} a_{1 i}\right| \\
& =\left|b_{i i}\right| .
\end{aligned}
$$

This proves given a matrix that is strictly diagonally dominant, after one step of Gaussian elimination, the resulting matrix is still strictly diagonally dominant. So, by induction, note, for the base case, A is strictly diagonally dominant. Now suppose $A^{(k)}$, the result of k steps of Gaussian elimination on A, is strictly diagonally dominant. Then $A^{(k+1)}$ is also strictly diagonally dominant since it is one step of Gaussian elimination on $A^{(k)}$. Therefore, by induction, $A^{(k)}$ is strictly diagonally dominant for all $k=$ $0, \ldots, n-1$. Thus, the upper triangular matrix we are interested in, $A^{(n-1)}$, is strictly diagonally dominant.

