Homework \#9

3. (a) Putting the L, U into one matrix, and keeping track of the permuted rows:

So

$$
P=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right], L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 4 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 / 2 & -2 / 7 & -1 / 14 & 1
\end{array}\right], U=\left[\begin{array}{cccc}
4 & -1 & -2 & -4 \\
0 & 7 / 4 & -1 / 2 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

6. Let m_{i} denote the number of nonzero elements in row i of A. Now, for Jacobi method to work, every diagonal element of A has to be nonzero, so for row i, we count 1 nonzero on the diagonal and $m_{i}-1$ nonzeros off the diagonal. Then, in the formula

$$
x_{i}^{(k+1)}=\left(b_{i}-\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}^{(k)}\right) / a_{i i},
$$

the summation sign involves elements of A that are off the diagonal, of which there are $m_{i}-1$ nonzeros. So, ignoring zeros, we count $m_{i}-1$ elements being summed under the summation sign, each of which has one multiplication. This adds up to $m_{i}-1$ multiplications under the summation sign. In total, for each i, there are m_{i} multiplications/divisions. Furthermore, the summations sign adds or subtracts $m_{i}-1$ elements, and then subtracts the result from b_{i}. Thus the numerator has m_{i} elements being added or subtracted, which requires $m_{i}-1$ additions/subtractions. So, for each i, there are $m_{i}+m_{i}-1=2 m_{i}-1$ flops. Thus, there is a total of $\sum_{i=1}^{n}\left(2 m_{i}-1\right)=$ $2 \sum_{i=1}^{n} m_{i}-n=2 m-n$ flops.
7. (a) Jacobi's method's iteration matrix is

$$
T=D^{-1}(L+U)=\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & -b \\
-c & 0
\end{array}\right]=\left[\begin{array}{cc}
1 / a & 0 \\
0 & 1 / d
\end{array}\right]\left[\begin{array}{cc}
0 & -b \\
-c & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -b / a \\
-c / d & 0
\end{array}\right]
$$

For eigenvalues, the characteristic equation is

$$
0=\operatorname{det}(T-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
-\lambda & -b / a \\
-c / d & -\lambda
\end{array}\right]=\lambda^{2}-b c /(a d)
$$

so the eigenvalues are $\lambda= \pm \sqrt{b c /(a d)}$, which may or may not have imaginary parts. So $|\lambda|=\sqrt{|b c /(a d)|}$, and $\rho(T)=\sqrt{|b c /(a d)|}$. Now

$$
\rho(T)<1 \Leftrightarrow \sqrt{|b c /(a d)|}<1 \Leftrightarrow|b c /(a d)|<1
$$

so Jacobi method converges if and only if $|b c /(a d)|<1$.
(a) Gauss-Seidel's iteration matrix is

$$
T=(D-L)^{-1} U=\left[\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & -b \\
0 & 0
\end{array}\right]=\frac{1}{a d}\left[\begin{array}{cc}
d & 0 \\
-c & a
\end{array}\right]\left[\begin{array}{cc}
0 & -b \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -b / a \\
0 & b c /(a d)
\end{array}\right]
$$

For eigenvalues, the characteristic equation is

$$
0=\operatorname{det}(T-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
-\lambda & -b / a \\
0 & b c /(a d)-\lambda
\end{array}\right]=\lambda(\lambda-b c /(a d))
$$

so the eigenvalues are $\lambda=0, b c /(a d)$. So $|\lambda|=0,|b c /(a d)|$, and $\rho(T)=|b c /(a d)|$. So

$$
\rho(T)<1 \Leftrightarrow|b c /(a d)|<1,
$$

so Gauss-Seidel converges if and only if $|b c /(a d)|<1$.
8. (Matlab)
(a) See "hw9afn.m".
(b) We get the approximation $[1.000000003884503,0.999999806026317,1.999999821080499]^{T}$.

