Math 174 Midterm

October 30, 2013

- Please put your name, ID number, and sign and date.
- There are 4 problems worth a total of 100 points.
- Calculators are allowed but you must show your work to receive credit.

Print Name: \qquad

Student ID: \qquad

Signature and Date: \qquad

Problem	Score
1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 25$
Total	

1. (25 pts) Suppose we are given the following Matlab function in the file f.m:
function $[y]=f(x)$

$$
y=\cos (x)-x
$$

end
Now given the header for a Matlab function:
function $[\mathrm{pn}]=\operatorname{secantmethod}(\mathrm{p} 0, \mathrm{p} 1, \mathrm{n})$
complete the function so that the function returns secant method's approximation p_{n} of the root of f for initial guesses $p_{0}=p 0, p_{1}=p 1$.
2. (25 pts) Let $f(x)=x^{2}-\frac{2}{x}$.
(a) Using starting interval [1, 2], if the first approximation is called c_{0}, find the method of false position's approximations c_{1} and c_{2} of the root of f.
(b) Using $p_{0}=2$, find Newton's method's approximations p_{1} and p_{2} of the root of f.
3. (25 pts) Let f be continuous in $[-1,3]$ and suppose $f(-1), f(3)$ have opposite signs. Applying the bisection method for the root of f with starting interval $[-1,3]$, call the first approximation $c_{0}=(-1+3) / 2$. Using bounds, estimate n such that the absolute error of the approximation c_{n} will be $\leq 10^{-9}$. You do not have to simplify your result.
4. (25 pts) Let g be a continuous function in [1,4] and suppose $2 \leq g(x) \leq 3$ for all $x \in[1,4]$. Show g has a fixed point in $[1,4]$.

