Math 174 Midterm 1

October 26, 2016

- Please put your name, ID number, and sign and date.
- There are 4 problems worth a total of 100 points.
- You must show your work to receive credit.

Print Name:			
Student ID: _			
Signature and	l Date:		

Problem	Score
1	/25
2	/25
3	/25
4	/25
Total	/100

1. (25 pts) (Matlab) Write a **Matlab program** with header:

function
$$[x] = backsub(n,U,b)$$

that inputs n; an **upper triangular** $n \times n$ matrix U; and an $n \times 1$ vector b, and outputs x, the solution of Ux = b, using **back substitution**. Remember back substitution:

$$x_i = \left(b_i - \sum_{j=i+1}^n u_{ij} x_j\right) / u_{ii}.$$

- 2. (25 pts) Circle **True or False** in each part. You do **not** have to show your work in this problem.
 - (a) Let f be a continuous function in [a, b], a < b, with more than one root, and suppose f(a) and f(b) have different signs. The bisection method, using starting interval [a, b], will produce a sequence of approximations that **always converges** to the root **closest** to the midpoint of [a, b].

True or False

(b) Let g be a continuous function in [a, b], a < b, and suppose g(a) < a and g(b) > b. Then g has to have a fixed point in [a, b].

True or False

(c) Let $g(x) = 2x^4 - x^3 + 2x^2 - 2x + 1$. Then p = 1/2 is a fixed point and fixed point interations will **always converge** to p if $p_0 \neq p$ is chosen **close enough** to p.

True or False

(d) Suppose we want a root of f(x). Let $\{p_n\}_{n=0}^{\infty}$ be the sequence of approximations generated by the secant method with $p_0 = a, p_1 = b$, and let $\{\tilde{p}_n\}_{n=0}^{\infty}$ be the sequence of approximations generated by the secant method with $\tilde{p}_0 = b, \tilde{p}_1 = a$. Then p_k , if it exists, is **always equal to** \tilde{p}_k , for $k = 2, 3, \ldots$ Remember secant method: $p_{n+1} = p_n - f(p_n)(p_n - p_{n-1})/(f(p_n) - f(p_{n-1}))$.

True or False

(e) Suppose we want roots of the continuously differentiable functions f(x) and $\tilde{f}(x) = 5f(x)$. Let $\{p_n\}_{n=0}^{\infty}$ be the sequence of approximations generated by Newton's method on f(x), with $p_0 = a$, and let $\{\tilde{p}_n\}_{n=0}^{\infty}$ be the sequence of approximations generated by Newton's method on $\tilde{f}(x)$, with $\tilde{p}_0 = a$. Then p_k , if it exists, is **always equal to** \tilde{p}_k , for $k = 1, 2, 3, \ldots$ Remember Newton's method: $p_{n+1} = p_n - f(p_n)/f'(p_n)$.

True or False

(f) Let f be a continuous function in [-1,3] and suppose f(-1) and f(3) have different signs. Let $\{p_n\}_{n=0}^{\infty}$ be the sequence of approximations generated by the bisection method using starting interval [-1,3] (so $p_0=1$). Then there has to be a root p of f satisfying $|p-p_5| \leq 1/20$.

True or False

- 3. (25 pts) Solve the following short problems.
 - (a) Use the **method of false position**, with starting interval [2, 3], to generate the p_0 and p_1 approximations to the root of $f(x) = x^2 5$. Remember false position:

$$p_n = b_n - f(b_n) \frac{b_n - a_n}{f(b_n) - f(a_n)}.$$

(b) Solve using **Gaussian elimination** without pivoting and **back substitution**, under 2-digit **rounding**, the linear system $A\vec{x} = \vec{b}$, with

$$A = \begin{bmatrix} -3 & 3 \\ 1 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

4. (25 pts) Let f be a twice continuously differentiable function with root at p, and suppose $f'(p) \neq 0$. Let $\{p_n\}_{n=0}^{\infty}$ be the sequence of approximations computed by Newton's method with starting guess p_0 . If p_n converges to p, use Taylor series to show the **order of convergence** is 2, and find the **asymptotic error constant**. Remember Taylor series:

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(c)}{2}(b-a)^2,$$

for some c between a and b; and order of convergence:

$$\lim_{n \to \infty} \frac{|p - p_{n+1}|}{|p - p_n|^{\alpha}} = \lambda.$$