Math 174 Midterm 2

November 16, 2016

- Please put your name, ID number, and sign and date.
- There are 4 problems worth a total of 100 points.
- You must show your work to receive credit.

Print Name: \qquad

Student ID: \qquad

Signature and Date: \qquad

Problem	Score
1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 25$
Total	

1. (25 pts) Write a Matlab program with header:
function [value] $=$ interpolatingpoly $(\mathrm{m}, \mathrm{x}, \mathrm{y}, \mathrm{z})$
that inputs number of data points m; x-coordinates of the data points, in the vector $x ; y$-coordinates of the data points, in the vector y; and location z, and outputs $p(z)$, calculated using the Lagrange form of the interpolating polynomial p for the data points.
Use only basic programming, such as for loops and if statements, and do not use any of Matlab's vector-vector or matrix-vector operations. Remember Lagrange form for $n+1$ data points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$:

$$
p(x)=\sum_{i=0}^{n}\left[y_{i}\left(\prod_{j=0, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}\right)\right] .
$$

2. (25 pts) Circle True or False in each part. You do not have to show your work in this problem.
(a) Let $p(x)$ be the interpolating polynomial for the data points with distinct nodes:

$$
\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)
$$

and suppose the divided difference $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=0$. Then $\operatorname{deg} p$ has to be $<n$. Remember $f\left[x_{i}\right]=f\left(x_{i}\right)$, and for $i<j, f\left[x_{i}, \ldots, x_{j}\right]=\frac{f\left[x_{i+1}, \ldots, x_{j}\right]-f\left[x_{i}, \ldots, x_{j-1}\right]}{x_{j}-x_{i}}$.

True or False

(b) Let A be an $n \times n$ nonsingular matrix and let P, L, U give the $P L U$ factorization, $P A=L U$, derived from Gaussian elimination with partial pivoting. Then, writing $L=\left(l_{i j}\right),\left|l_{i j}\right|$ is always ≤ 1, for all $i, j=1, \ldots, n$.

True or False
(c) Let A be an $n \times n$ lower triangular, nonsingular matrix and let be an $n \times 1$ vector. Then Gauss-Seidel on the linear system $A x=b$ always converges for any initial guess. Remember Gauss-Seidel: $x^{(k+1)}=(D-L)^{-1} U x^{(k)}+(D-L)^{-1} b$ or $x_{i}^{(k+1)}=\left[b_{i}-\sum_{j=0}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right] / a_{i i}$.

True or False
(d) Let A be an $n \times n$ upper triangular, nonsingular matrix and let b be an $n \times 1$ vector. With $x^{(0)}$, let $x^{(k)}$ be generated using Jacobi method on $A x=b$. With $\tilde{x}^{(0)}=x^{(0)}$, let $\tilde{x}^{(k)}$ be generated using Gauss-Seidel on $A x=b$. Then $\tilde{x}^{(k)}$ has to equal $x^{(k)}$ for any $x^{(0)}$ and for all $k \geq 0$. Remember Jacobi: $x^{(k+1)}=$ $D^{-1}(L+U) x^{(k)}+D^{-1} b$ or $x_{i}^{(k+1)}=\left[b_{i}-\sum_{j=0, j \neq i}^{n} a_{i j} x_{j}^{(k)}\right] / a_{i i}$.

True or False
(e) Suppose we know $\frac{1}{\sqrt{n}}\|x\|_{2} \leq\|x\|_{\infty} \leq\|x\|_{2}$, for all $n \times 1$ vectors x. Then $\|A\|_{\infty}$ has to be $\leq \sqrt{n}\|A\|_{2}$, for all $n \times n$ matrices A. Remember, for natural matrix norms, $\|A\|=\max _{x \neq 0}\left(\frac{\|A x\|}{\|x\|}\right)$.

True or False
(f) Let $f(x)=x^{3}+x^{2}+x+1$ and let $p(x)$ be the interpolating polynomial for the data points $(i-3, f(i-3)), i=0, \ldots, 6$. Then $p(x)$ has to equal $f(x)$ for all x.

True or False
3. (25 pts) Solve the following short problems.

(a) Find Newton's form of the interpolating polynomial for the table of data: | x | -2 | 1 | 3 |
| :---: | :--- | :--- | :--- |
| $f(x)$ | -1 | 5 | 4 | . Remember, Newton's form

$$
p(x)=\sum_{i=0}^{n}\left[f\left[x_{0}, \ldots, x_{i}\right]\left(\prod_{j=0}^{i-1}\left(x-x_{j}\right)\right)\right] .
$$

(b) Consider $A x=b$, where

$$
A=\left[\begin{array}{ccc}
2 & -1 & 4 \\
1 & 4 & -1 \\
-2 & 2 & -1
\end{array}\right], b=\left[\begin{array}{l}
6 \\
8 \\
5
\end{array}\right]
$$

Use Jacobi method with initial guess $x^{(0)}=[3,2,-5]^{T}$ to generate $x^{(1)}$.
4. (25 pts) Let $A=\left[\begin{array}{cc}2 & 1 \\ -3 & 1\end{array}\right]$. For a given b, let x be the solution to $A x=b$, and for a given δb, let $x+\delta x$ solve $A(x+\delta x)=b+\delta b$. Then for a vector norm $\|\cdot\|$ and its associated natural matrix norm, prove the error bound

$$
\frac{\|\delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\delta b\|}{\|b\|}
$$

Then, using $\|\cdot\|_{\infty}$, find one example of $b \neq 0$ and $\delta b \neq 0$ such that equality in this error bound is achieved. Note δx and δb are names of vectors and does not refer to the multiplication of a constant δ to a vector. Remember

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

