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Abstract

This paper provides global formulations of Lagrangian and Hamiltonian variational dynamics
evolving on a manifold embedded in Rn, which appears often in robotics and multi body dy-
namics. Euler–Lagrange equations and Hamilton’s equations are developed in a coordinate-free
fashion on a manifold, without relying on local parameterizations that may lead to singularities
and cumbersome equations of motion. The proposed intrinsic formulations of Lagrangian and
Hamiltonian dynamics are expressed compactly, and they are useful in analysis and computation
of the global dynamics. These are illustrated by dynamic systems on the unit-spheres and the
special orthogonal group.

1. Introduction
The configuration of various robotics can be represented by the elements of the one-sphere, the
two-sphere, the special orthogonal group, or their products, which are manifolds embedded in
Rn. For example, the configuration of articulated robotic arms interconnected by spherical joints
is represented by two-spheres (Murray 1993), and the configuration of unmanned aerial vehicles
is defined by the special Euclidean group. In quantum mechanics, the pure state space of a two-
level quantum mechanical system is a two-sphere, referred to as the Bloch sphere (Bloch 1946).

In most of the existing literature on dynamical systems evolving on an embedded manifold,
local coordinates are repeatedly used for dynamic modeling and control system design. For ex-
ample, the dynamics of a spherical pendulum is often defined in terms of two angles that are
typically considered to evolve on R2. However, such parameterizations of an embedded mani-
fold suffer from the following two main issues. First, parameterizations represent the manifold
only locally. This causes a singularity in representing the kinematics on the embedded manifold,
which cannot be avoided unless one switches coordinate charts whenever the trajectory reaches
the vicinity of the singularity.

The second issue is that the equations of motion of dynamical systems on an embedded mani-
fold become exceedingly complicated when expressed using local coordinates. For example, the
dynamics of a multiple spherical pendulum, written in terms of angles, involves complicated ex-
pressions of trigonometric functions. As such, it is impossible to develop the equations of motion
for complex multibody systems in a concise manner in terms of local coordinates.

This paper provides global formulations of dynamics evolving on a manifold embedded in
Rn. In particular, we study dynamical systems that can be viewed as Lagrangian systems or as
Hamiltonian systems that encompass a large class of mechanical systems that appear in robotics,
structural dynamics, quantum mechanics or meteorology. Most importantly, dynamics are for-
mulated directly on the manifold in a global fashion via variational principles.

This geometric formulation is said to be coordinate-free, as it does not require the use of
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local charts, coordinates or parameters that may lead to singularities or ambiguities in the rep-
resentation. As such, it can be applied to arbitrarily large maneuvers on the manifold globally.
Furthermore, this provides an efficient and elegant way to formulate, analyze, and compute the
dynamics and their temporal evolutions. The corresponding mathematical model developed on
the manifold is nicely structured and elegant. This representational efficiency has a substantial
practical advantage compared with local coordinates for many complex dynamical systems; this
fact has not been appreciated by the applied scientific and engineering communities.

In short, the main contribution of this paper is providing geometric formulations of the equa-
tions of motion for Lagrangian and Hamiltonian systems that evolve on an embedded manifold
using variational methods. The proposed global formulations, that do not require local charts,
have not been previously studied, even in the well-known literature on geometric mechanics,
such as (Marsden 1992), (Holm 2009), (Marsden 1999). Preliminary results have been given for
two-spheres in (Lee 2009), (Lee 2012), and for special Euclidean group in (Lee 2007). This pa-
per provides both Euler–Lagrange equations and Hamilton’s equations for an arbitrary embedded
manifold, such as a subspace, the one-sphere, the two-sphere or the special orthogonal group.

Geometric mechanics, as presented in this paper, emphasizes the development of Lagrangian
and Hamiltonian equations of motion in specific forms based on the geometric properties of the
configuration manifold. This perspective differs from much of the existing literature on geomet-
ric mechanics, for example, such as in (Arnold 1989), (Bloch 2003), (Bullo 2005), (Marsden
1992), (Marsden 1990), where geometry is used in the analysis of solutions and flow properties.

2. Lagrangian and Hamiltonian Dynamics on an Embedded Manifold
2.1. Variations on a manifold

Consider a differentiable manifold M embedded in Rn; we denote the tangent space at x ∈ M by
TxM and we denote that tangent bundle of M by TM. The cotangent space T∗xM is identified with
TxM via the standard inner product on Rn. The subsequent development describes variations of
functions with values in the manifold M. Let x : [t0, tf ] → M be a differentiable curve. The
family of variations of x is defined by a differentiable mapping xε : (−c, c) × [t0, tf ] → M for
c > 0; since M is an embedded manifold, each member of the family can be shown to have the
power series form

xε(t) = x(t) + εδx(t) +O(ε2), t0 ≤ t ≤ tf ,

for some differentiable curve δx : [t0, tf ]→ Rn that satisfies δx(t) ∈ Tx(t)M, t0 ≤ t ≤ tf , and
δx(t0) = δx(tf ) = 0. It is easy to see that the variations satisfy x0(t) = x(t), t0 ≤ t ≤ tf , and
xε(t0) = x(t0) and xε(tf ) = x(tf ) for any ε ∈ (−c, c).

2.2. Euler–Lagrange equations

Consider a Lagrangian L : TM → R1. We derive the corresponding Euler–Lagrange equations
of motion according to Hamilton’s principle, namely that the infinitesimal variation of the action
integral is zero along any motion as follow. Define the action integral along a motion that evolves
on the manifold M as G =

∫ tf
t0
L(x, ẋ) dt.

The infinitesimal variation of the action integral can be written as

δG =

∫ tf

t0

{
∂L(x, ẋ)

∂ẋ
· δẋ+

∂L(x, ẋ)

∂x
· δx
}
dt.

Integrating the first term on the right by parts, and using the fact that δx vanishes at t = t0 and
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tf , the infinitesimal variation of the action integral is given by

δG =

∫ tf

t0

{
− d

dt

(
∂L(x, ẋ)

∂ẋ

)
+
∂L(x, ẋ)

∂x

}
· δx dt.

From Hamilton’s principle, δG = 0 for all infinitesimal variations δx : [t0, tf ]→ Rn, that satisfy
δx(t) ∈ Tx(t)M and vanish at t0, and tf . The fundamental lemma of the calculus of variations
on a configuration manifold M implies that{

d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x

}
· δx = 0, (2.1)

for all δx ∈ TxM. This is an abstract condition, essentially in the form given in (Arnold 1989),
that characterizes the Lagrangian flow that evolves on the tangent bundle of the configuration
manifold.

It is more convenient to express this Euler–Lagrange condition in the form of differential
equations, defined on the embedding space Rn, that describe this evolution on the tangent bundle
TM. To this end, we introduce the orthogonal projection matrix for each x ∈ M as P (x) : Rn →
TxM which satisfies the orthogonality condition: for each y ∈ Rn

(y − P (x)y) · z = 0, for all z ∈ TxM. (2.2)

We assume the orthogonal projection operator P is a differentiable matrix valued function. One
may show that the projection operator P (x) is symmetric, i.e., P (x) = P (x)TP (x).

Thus the Euler–Lagrange condition (2.1) holds for all infinitesimal variations at x ∈ M given
by δx = P (x)y for any y ∈ Rn. This implies that the Euler–Lagrange condition can be expressed
in terms of the orthogonal projection operator as follows.

PROPOSITION 1. Consider a differentiable manifold M embedded in Rn. The Euler–Lagrange
equation for a Lagrangian L : TM→ R1 can be written as

PT (x)

{
d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x

}
= 0, (2.3)

where the projection operator is defined by (2.2).

This is a more explicit characterization of the Lagrangian flow that evolves on the tangent bun-
dle of the configuration manifold, that is TM. It is interesting to note that the expression in the
braces corresponds to the conventional Euler–Lagrange equation for a mechanical system evolv-
ing on Rn; the Euler–Lagrange equation on an embedded manifold is obtained via projection
onto the tangent space.

2.3. Legendre transformation and the Hamiltonian

For the given Lagrangian, the Legendre transformation FL : TM→ T∗M is defined as

FL(x, ẋ) · v =
d

ds

∣∣∣∣
s=0

L(x, ẋ+ sv) = µ · v,

where v ∈ TxM. This yields the momentum vector µ ∈ T∗xM given by

µ = PT (x)
∂L(x, ẋ)

∂ẋ
. (2.4)

We assume that the Lagrangian is regular or nondegenerate such that the Legendre transfor-
mation is locally invertible, which induces an equivalent Hamiltonian system on T∗M. Define
the Hamiltonian function H : T∗M→ R1 as

H(x, µ) = µ · ẋ− L(x, ẋ).

IMA Conference on Mathematics of Robotics  
9 – 11 September 2015, St Anne’s College, University of Oxford



Global Formulations of Lagrangian and Hamiltonian Dynamics on Embedded Manifolds 4

One may derive Hamilton’s equations by rewriting the Euler–Lagrange equation (2.3) in terms of
(x, µ) via (2.4). However, following such procedure for an arbitrary manifold is quite challeng-
ing. As such, we derive Hamilton’s equations directly from Hamilton’s phase space variational
principle instead.

2.4. Hamilton’s Equations

Hamilton’s equations on manifolds can be most directly obtained from a variational principle on
T∗M. Hamilton’s phase space variational principle states that the infinitesimal variation of the
action integral,

G =

∫ tf

t0

{µ · ẋ−H(x, µ)} dt,

subject to fixed endpoints for x(t), along any motion is zero.
Integrating by parts, and using the fact that the variations vanish at the end points,

δG =

∫ tf

t0

{(
−µ̇− ∂H(x, µ)

∂x

)
· δx+

(
ẋ− ∂H(x, µ)

∂µ

)
· δµ

}
dt.

Since the manifold M is embedded in Rn, we have a constraint on the momentum µ, which
is given by (In×n − P (x)T )µ = 0. This follows from the fact that the projection P (x)T is
idempotent, i.e., P (x)TP (x)T = P (x)T . Therefore, by the definition (2.4) of µ, P (x)Tµ = µ,
or equivalently, (In×n − P (x)T )µ = 0. This induces a constrained variation,

−
(
∂PT (x)µ

∂x

)
δx+ (In×n − P (x)T )δµ = 0.

Then, the first term of the above equation can be viewed as a weighted linear combination of
matrices acting on µ. But, it is also linear in δx, and can be rewritten as a matrix acting on δx,(

∂PT (x)µ

∂x

)
δx =

(
n∑
i=1

∂P (x)T

∂xi
δxi

)
µ =

[
∂P (x)T

∂x1
µ

∣∣∣∣ · · · ∣∣∣∣ ∂P (x)T

∂xn
µ

]
δx, (2.5)

which can be also considered as the Jacobian of the vector-valued function PT (x)µ with respect
to x. Equivalently, it is obtained by concatenating column vectors that are given by the matrix-
vector product of the matrix ∂P (x)T

∂xi
and the vector µ.

To impose this constraint on the infinitesimal variations explicitly, we decompose the varia-
tion δµ into the sum of two orthogonal components: one component in T∗xM, namely δµM =
P (x)T δµ, and the other component orthogonal to T∗xM, namely δµC = (In×n − P (x)T )δµ.
Then, satisfying the constrained variation implies

δµC = (In×n − P (x)T )δµ =

(
∂PT (x)µ

∂x

)
δx. (2.6)

From Hamilton’s phase space variational principle, (x, µ) : [t0, tf ] → T∗M has the property
that δG = 0 for all continuous infinitesimal variations δx : [t0, tf ] → Rn, δµ : [t0, tf ] → Rn,
that satisfy (δx(t), δµ(t)) ∈ T(x(t),µ(t))T

∗M and δx(t0) = δx(tf ) = 0. This yields the following
Hamilton’s equations.

PROPOSITION 2. Consider a differentiable manifold M embedded in Rn. Hamilton’s equa-
tions for a Hamiltonian H : T∗M→ R1 can be written as

ẋ = P (x)
∂H(x, µ)

∂µ
, (2.7)
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µ̇ = −PT (x)
∂H(x, µ)

∂x
+

{
PT (x)

(
∂PT (x)µ

∂x

)T
P (x)

+

(
∂PT (x)µ

∂x

)
P (x)− PT (x)

(
∂PT (x)µ

∂x

)T}
∂H(x, µ)

∂µ
. (2.8)

Furthermore, the Hamiltonian is preserved along any solution of Hamilton’s equations, if it is
time-invariant.

Proof. Decomposing δµ as δµM + δµC and substituting (2.6), the infinitesimal variation of
the action integral can be written as

δG =

∫ tf

t0

(
−µ̇− ∂H(x, µ)

∂x
+

(
∂PT (x)µ

∂x

)T (
ẋ− ∂H(x, µ)

∂µ

))
· δx

+ P (x)

(
ẋ− ∂H(x, µ)

∂µ

)
· δµ dt.

Then, the fundamental lemma of the calculus of variations yields

0 = PT (x)

(
−µ̇− ∂H(x, µ)

∂x
+

(
∂PT (x)µ

∂x

)T (
ẋ− ∂H(x, µ)

∂µ

))
, (2.9)

0 = P (x)

(
ẋ− ∂H(x, µ)

∂µ

)
.

Since ẋ ∈ TxM by definition, it follows that P (x)ẋ = ẋ. This yields (2.7) from the second
equation above. The first equation (2.9) is incomplete since it only determines the component of
µ̇ projected onto T∗xM. The remaining component is determined by taking the time derivative of
(In×n − P (x)T )µ = 0 to obtain

−
(
∂PT (x)µ

∂x

)
ẋ+ (In×n − PT (x))µ̇ = 0,

which yields

(In×n − PT (x))µ̇ =

(
∂PT (x)µ

∂x

)
ẋ =

(
∂PT (x)µ

∂x

)
P (x)

∂H(x, µ)

∂µ
. (2.10)

Combining (2.9) with (2.10), we obtain

µ̇ = P (x)T µ̇+ (In×n − P (x)T )µ̇

= −PT (x)
∂H(x, µ)

∂x
+ PT (x)

(
∂PT (x)µ

∂x

)T (
ẋ− ∂H(x, µ)

∂µ

)
+

(
∂PT (x)µ

∂x

)
ẋ.

Rearranging this with (2.7) yields (2.8).
Decomposing µ̇ into µ̇ = (I − P (x)T )µ̇+ P (x)T µ̇, the time-derivative of the Hamiltonian is

written as

dH(x, µ)

dt
=
∂H(x, µ)

∂x
· ẋ+ PT (x)

∂H(x, µ)

∂µ
· PT (x)µ̇

+ (I − P (x)T )
∂H(x, µ)

∂µ
· (I − P (x)T )µ̇.

Substituting (2.9), (2.10), and (2.7), and rearranging using the symmetry of the projection, namely

IMA Conference on Mathematics of Robotics  
9 – 11 September 2015, St Anne’s College, University of Oxford



Global Formulations of Lagrangian and Hamiltonian Dynamics on Embedded Manifolds 6

P (x)PT (x) = PT (x) = P (x), we obtain dH
dt = 0, which shows the conservation of the Hamil-

tonian.

Thus Hamilton’s equations (2.7) and (2.8) describe the Hamiltonian flow in terms of the evo-
lution of (x, µ) ∈ T∗M.

3. Lagrangian and Hamiltonian Dynamics for Specific Manifolds
Lagrangian and Hamiltonian dynamics developed for an arbitrary embedded manifold in the
prior section can be applied to a wide class of mechanical or robotic systems in a unified way.
Here, we illustrate Lagrangian and Hamiltonian systems evolving on a subspace, the one-sphere,
the two-sphere, and the special orthogonal group.

3.1. Dynamics on a subspace M of Rn

LetA ∈ Rm×n have rankm. The configuration manifold M = {x ∈ Rn : Ax = 0} is a subspace
of Rn. The projection operator is the constant matrix P (x) = In×n − AT (ATA)−1A for any
x ∈ M. Consequently, the Euler–Lagrange equation (2.3) reduces to

[In×n −AT (ATA)−1A]

{
d

dt

∂L

∂ẋ
− ∂L

∂x

}
= 0. (3.1)

The Legendre transformation yields µ = [In×n−AT (ATA)−1A]∂L∂ẋ . Hamilton’s equations (2.7)
and (2.8) simplify to

ẋ = [In×n −AT (ATA)−1A]
∂H

∂µ
, µ̇ = −[In×n −AT (ATA)−1A]

∂H

∂x
. (3.2)

3.2. Dynamics on M = S1

Suppose the configuration manifold is given by the one-sphere, M = S1 = {x ∈ R2 | ‖x‖ = 1}.
The projection operator at x ∈ S1 corresponds to the orthogonal projection onto the line normal
to x, and it is given by P (x) = I2×2−xxT . From (2.3), the Euler–Lagrange equation on M = S1

is given by

(I2×2 − xxT )

{
d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x

}
= 0. (3.3)

The Legendre transformation yields µ = (I2×2 − xxT )∂L∂ẋ . The derivative of the projection
operator defined by (2.5) is(

∂PT (x)µ

∂x

)
δx =

∂(I2×2 − xxT )µ

∂x
δx = −δxxTµ− xδxTµ = −(xµT )δx,

where we have used the fact that xTµ = 0. Substituting this into (2.8) and using the fact that
µTx = 0 and xTx = 1, repeatedly, Hamillton’s equations on M = S1 are given by

ẋ = (I2×2 − xxT )
∂H(x, µ)

∂µ
, µ̇ = −(I2×2 − xxT )

∂H(x, µ)

∂x
+ (µxT − xµT )

∂H(x, µ)

∂µ
.

(3.4)

3.3. Dynamics on M = S2

Suppose the configuration manifold is given by the two-sphere, M = S2 = {x ∈ R3 | ‖x‖ = 1}.
The projection operator at x ∈ S2 is given by P (x) = I3×3−xxT . Similar to the prior subsection,
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the Euler–Lagrange equation on M = S2 is

(I3×3 − xxT )

{
d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x

}
= 0. (3.5)

The Legendre transformation yields µ = (I3×3 − xxT )∂L∂ẋ . Hamilton’s equations on S2 are
written as

ẋ = (I3×3 − xxT )
∂H(x, µ)

∂µ
, µ̇ = −(I3×3 − xxT )

∂H(x, µ)

∂x
+ (x× µ)× ∂H(x, µ)

∂µ
,

(3.6)

where we have used the identity (µxT − xµT )z = (x× µ)× z for any x, z, µ ∈ R3.

3.4. Dynamics on M = SO(3)

Suppose that the configuration manifold is the special orthogonal group, SO(3) = {R ∈ R3×3 |RTR =
I3×3, det[R] = 1}. The tangent space atR is given by TRSO(3) = {V ∈ R3×3 |RTV+V TR =
0}. For any V ∈ TRSO(3), there exists v ∈ R3 such that V = Rv̂, where the hat map ∧
transforms a 3 × 1 vector into a 3 × 3 skew-symmetric matrix such that x̂y = x × y for any
x, y ∈ R3 (Marsden 1999). The inverse of the hat map is denoted by the vee map, ∨.

Instead of considering that SO(3) is embedded in R9, we assume that the embedding space
of SO(3) is R3×3. The definitions of the inner product and the projection operator are first gen-
eralized to R3×3 as follows. The inner-product is defined as an element-wise operation. More
explicitly, for V,W ∈ TRSO(3),

V ·W = tr
[
V TW

]
=

3∑
i,j=1

VijWij .

The projection operator acted on Y ∈ R3×3 can be written as

P (R, Y ) =
1

2
R(RTY − Y TR) =

1

2
(Y −RY TR), (3.7)

which is clearly in TRSO(3). The projection is orthogonal since

(Y − P (R, Y )) ·Rẑ =
1

2
tr[(Y +RY TR)ẑRT ] =

1

2
tr[(RTY + Y TR)ẑ] = 0,

for any z ∈ R3, where we have used the facts that the trace is invariant under transpose and
cyclic permutation, and the trace of the product of any symmetric matrix and any compatible
skew-symmetric matrix is zero. It is also symmetric since for any Z ∈ R3×3,

Z · P (R, Y ) =
1

2
tr[(Y −RY TR)ZT ] =

1

2
tr[Y T (Z −RZTR)] = Y · P (R,Z).

To describe the proposed approach more clearly and explicitly, the attitude dynamics of a free
rigid body is considered. Let J ∈ R3×3 be the moment of inertia matrix of the rigid body, and
define a non-standard inertia matrix Jd = 1

2 tr[J ]I3×3 − J . The Lagrangian of the rigid body
corresponding to the rotational kinetic energy can be written as

L(R, Ṙ) =
1

2
tr[ṘJdṘT ] =

1

2
Ṙ · ṘJd,

which is identical to the common expression 1
2ΩTJΩ where Ω = (RT Ṙ)∨ ∈ R3 denotes the

angular velocity of the rigid body (Lee 2007).
We have ∂L

∂Ṙ
= ṘJd, where ∂L

∂Ṙ
∈ R3×3 are defined such that its (i, j)-th element corresponds
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to the derivative of L with respect to the (i, j)-th element of R. From (2.3) and (3.7), the Euler–
Lagrange equation is given by

R̈Jd −RJdR̈TR = 0. (3.8)

Next, we show that this is equivalent to the common Euler’s equation for a rigid body, written
in terms of the standard inertia matrix J and the angular velocity Ω. Since Ṙ = RΩ̂, we have
R̈ = RΩ̂2+R ˆ̇Ω. Therefore,RT R̈ = Ω̂2+ ˆ̇Ω. Left-multiplying both sides of the above expression
with RT , and substituting this,

ˆ̇ΩJd + Jd
ˆ̇Ω + Ω̂2Jd − JdΩ̂2 = 0.

Using the identities of the hat map, we have ˆ̇ΩJd + Jd
ˆ̇Ω = {(tr[Jd]I3×3 − Jd)Ω̇}∧ = (JΩ̇)∧,

and Ω̂2Jd − JdΩ̂2 = ĴdΩΩ̂ − Ω̂ĴdΩ = −ĴΩΩ̂ + Ω̂ĴΩ = (Ω × JΩ)∧. Therefore, the above
equation reduces to Euler’s equation,

JΩ̇ + Ω× JΩ = 0.

These results can be also generalized to a complicated manifold that is composed of the products
of an arbitrary number of the one-spheres, the two-spheres, and the special orthogonal groups.
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