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ESTIMATION FOR ALMOST PERIODIC PROCESSES

BY KEH-SHIN LII AND MURRAY ROSENBLATT

University of California, Riverside and University of California, San Diego

Processes with almost periodic covariance functions have spectral mass
on lines parallel to the diagonal in the two-dimensional spectral plane. Meth-
ods have been given for estimation of spectral mass on the lines of spectral
concentration if the locations of the lines are known. Here methods for es-
timating the intercepts of the lines of spectral concentration in the Gaussian
case are given under appropriate conditions. The methods determine rates
of convergence sufficiently fast as the sample size n → ∞ so that the spec-
tral estimation on the estimated lines can then proceed effectively. This task
involves bounding the maximum of an interesting class of non-Gaussian pos-
sibly nonstationary processes.

1. Introduction. The main objective of this paper is to present a constructive
method to determine the lines of support of spectra or, equivalently, the frequencies
or periods of Gaussian harmonizable processes with almost periodic covariances
under appropriate conditions. The processes considered provide an interesting set
of random processes that are generally not transient and not stationary and for
which Fourier methods of analysis are helpful and meaningful. The lines of support
of spectra are lines parallel to the diagonal in the two-dimensional spectral plane.
A number of papers have discussed spectral estimation in this context but they
all assume knowledge of the lines of support of the spectra. The novelty of this
paper is in the presentation of constructive methods for estimating the lines of
support under appropriate conditions with a rate of convergence good enough to
imply bias and covariance of spectral estimation using the estimated support lines
with the same asymptotic properties as if the actual lines of support were known
precisely.

Almost periodically correlated processes have been considered by Alekseev
[1], Hurd [10], Gardner [5], Gladyshev [9], Gerr and Allen [7, 8], Dandawate
and Giannakis [3], Leskow and Weron [14] and Lii and Rosenblatt [15]. Exten-
sive application of periodically correlated (or cyclostationary) processes is noted
in [6] and references therein. For the sake of simplicity and economy, we limit our-
selves to a discrete time parameter process {Xn,n = . . . ,−1,0,1, . . .} with mean
EXn ≡ 0. The process {Xn} with covariance function rn,m = EXnXm is said to be
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periodically correlated with period T if

rn+T ,m+T = rn,m.(1.1)

We shall call {Xn} a process with almost periodically correlated covariance
function if for each (s, τ ), there are functions αj (s, τ ) and real λj (s, τ ) with∑

j |αj (s, τ )| < ∞ such that, for each s, τ , rs+t,τ+t = ∑
j αj (s, τ )eiλj (s,τ )t with

the convergence uniform in s, τ . We shall call a sequence {a(n)} almost peri-
odic if there are sequences {αj }, real {βj } such that a(n) = ∑

j αj e
iβj n with∑

j |αj | < ∞.
The process {Xn} is harmonizable (in the sense of Loève) if it has a Fourier

representation in mean square,

Xn =
∫ π

−π
einλ dZ(λ),(1.2)

with the random spectral function having a covariance

cov
(
Z(λ),Z(µ)

) = F(λ,µ),
(1.3)

r(n,m) =
∫ π

−π

∫ π

−π
einλ−imµ dF(λ,µ),

∫ π

−π

∫ π

−π
|dF(λ,µ)| < ∞

[16, 20]. Almost periodicity of the covariance function of a harmonizable process
implies that F has mass (complex) on at most a countable number of diagonal
lines

λ = µ + b, b = bj , j = . . . ,−1,0,1, . . . .

If the process is real-valued (as we assume to be the case) and λ = µ + b is a line
of spectral support, then so is λ = µ − b.

If the spectra on the lines of support of F are absolutely continuous with respect
to Lebesgue measure with spectral densities fb(µ), the assumption that {Xn} is
real-valued implies that

fb(µ) = f̄−b(µ + b) = f̄−b(−µ) = fb(−µ − b).(1.4)

Also,

|fb(µ)|2 ≤ f0(µ)f0(µ + b).(1.5)

Let us call L the collection of b’s corresponding to lines with nontrivial spec-
tral support. In [3], the spectra fb(µ) are estimated under appropriate conditions
assuming that the elements of L are known.

We consider estimation of b ∈ L under the assumption that L is finite and∫ π
−π fb(λ) dλ �= 0 and see whether the final estimates of fb(µ) based on these

estimated elements of L produce an effect.
At this point, a few additional remarks are made on related papers. Tian [18]

considers time domain estimation of the integral period of a sequence with period-
ically correlated covariance function observed at integral time. Hurd and Gerr [11]
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and Gerr and Allen [7] use the coherence between spectral components to test for
a specific period of a periodically correlated covariance function against the null
hypothesis of stationarity. They used the integrated coherence along diagonal spec-
tral support lines. Lund et al. [17] use an averaged squared coherence statistic to
test existence of periodic correlation against stationarity. The case of a continuous
parameter process {X(·)} is considered in [4] and [12].

Before the main discussion we describe a simple but interesting class of
processes with almost periodic covariance function. Additional examples can be
found in [6] and [20]. Set

Xn =
m∑

j=1

cos(wjn)Y
(j)
n−τj

, 0 ≤ wj ≤ π,(1.6)

where the processes {Y (j)
n } are jointly stationary with means zero and the cross-

spectral density of Y (j)(·) and Y (k)(·) is fjk(·). This commonly used model in
communication is a mixture of amplitude modulated (AM) signals with carrier
frequency wj modulated by the signal Y

(j)
n with possible relative delay τj . If the

stationary processes {Y (j)
n } have the spectral representation

Y (j)
n =

∫ π

−π
einλ dZj (λ),(1.7)

the process {Xn} is given by Xn = ∫ π
−π einλ dZ(λ) with

dZ(η) = 1
2

∑
j

[
e−iτj (η−wj ) dZj (η − wj) + e−iτj (η+wj ) dZj (η + wj)

]
.(1.8)

Since the vector of processes {Zj(λ)} has orthogonal increments, the spectral mass
of the process {Xn} is given by

E dZ(λ)dZ(µ) =



1
4

∑
j

{fjj (λ − wj) + fjj (λ + wj)}dλ, on λ = µ,

1
4

{∑
j,k

e−i(τj−τk)(λ−wj )fjk(λ − wj)

+ ∑
j,k

′e−i(τj−τk)(λ+wj )fjk(λ + wj)

}
dλ,

where the first sum is over (j, k) such that

λ − µ = wj ± wk = η �= 0

and the second primed sum over (j, k) such that

λ − µ = −wj ± wk = η �= 0,

0, otherwise.

(1.9)
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The estimation method proposed in this paper can be used to estimate the frequen-
cies wj , the spectral densities of the Y (j)’s and the τj ’s under certain assumptions.
We note that the remarks for almost periodic sequences imply that a moving aver-
age process

Xn =
m∑

j=0

aj (n)ξn−j , Eξn ≡ 0,

with the sequences (in n) {aj (n)}, j = 0,1, . . . ,m, almost periodic and the process
{ξn} a white noise process, is a process with almost periodic covariance func-
tion. That is also true of the autoregressive scheme Xn − anXn−1 = ξn if {an =∑

j αj e
iβj n} is an almost periodic sequence with

∑
j |αj | < 1 (see also [13]).

We note that in meteorological, astronomical and engineering applications
questions of periodic or almost periodic covariances are often of interest (see
[17] and [20] for examples). The organization of the rest of the paper is as follows.
In the next section notation and assumptions are given. The main result on the es-
timation of intercepts of almost periodic spectral support lines using an integrated
periodogram [see (2.6)] is presented after Corollary 4. The estimation method is
based on Theorem 4. Theorems 5 and 7 show that the asymptotic bias and variance
of spectral estimates on the estimated lines are the same as those when the support
lines are known. Section 3 contains a simulated example to demonstrate the effec-
tiveness of the methods. The Appendix contains most of the proofs of the results.

2. Results. In this section we introduce notation and assumptions, and state
the main results. The principal thread of the derivation will be indicated. However,
the detailed proofs of the results will be given in the Appendix. By

W = Z mod 2π,(2.1)

it is to be understood that −π < W ≤ π and if {u} is the integer � with −1/2 <

u − � ≤ 1/2, then (Z mod 2π) = Z − {Z/(2π)}2π. Consider the finite Fourier
transform

Fn(λ) =
n/2∑

t=−n/2

Xte
−itλ(2.2)

and the periodogram

In(λ,µ) = 1

2π(n + 1)
Fn(λ)Fn(µ).(2.3)

Here we assume that n is even and t is summed over integers. Let K(η) be a
continuous nonnegative symmetric weight function with finite support and such
that

∫ ∞
−∞ K(η)dη = 1. Set Kn(η) = b−1

n K(b−1
n η) with bn ↓ 0 and nbn → ∞ as

n → ∞. A plausible estimate of fw(η) is given by

f̂w(η) =
∫ π

−π
In(µ + w,µ)Kn(µ − η)dµ.(2.4)
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ASSUMPTION 1. {Xk}, EXk = 0, is a harmonizable Gaussian sequence with
almost periodic covariance function. The set L of b’s with nontrivial support is
finite, and the fb(µ), b ∈ L, are continuously differentiable on the curve λ = (b +
µ)mod 2π on the torus of points (λ,µ) ∈ [−π,π ]2, with (−π,µ) identified with
(π,µ) and (λ,−π) with (λ,π).

Now

rn,m = EXnXm = ∑
b∈L

∫ π

−π
ein(µ+b)e−imµfb(µ)dµ = ∑

b∈L

einbcb(n − m),

(2.5)
cb(n) :=

∫ π

−π
einλfb(λ) dλ.

ASSUMPTION 2. There is a function c(j) ≥ 0 on the integers with |cb(j)| ≤
c(j) for all b ∈ L and

∑
j c(j) < ∞. Unless otherwise noted, the summation over

j is on the integers.

ASSUMPTION 3. The fb(µ), b ∈ L, are such that
∫ π
−π fb(µ)dµ �= 0.

In general, it is possible that there may be spectral lines b with
∫ π
−π fb(µ)dµ = 0

(see [11], page 347). In that case let L consist only of those b with
∫ π
−π fb(µ)dµ �=

0 and our arguments will be valid for the restricted L. The local extrema of the
absolute value of the integrated periodogram

Un(b) :=
∫ π

−π
In(b + µ,µ)dµ = 1

n + 1

n/2∑
k=−n/2

X2
ke

−ibk(2.6)

will be used to estimate the b ∈ L under Assumption 3. The fact that (2.6) is
a periodogram computed for X2

k is due to the uniform weighting in integrat-
ing In(b + µ,µ). With nonuniform weighting, one would get more complicated
quadratic forms that might be useful if

∫ π
−π fb(µ)dµ = 0.

Theorems 1 and 2 give estimates for EIn(λ,µ) and cov(In(µ + w,µ), In(µ
′ +

w′,µ′)) and it is crucial that they are given with error terms uniform in the w’s
and µ’s. Let

y(b,w) = (b − w)mod 2π.(2.7)

It will also be convenient to make use of the following expressions for b, b′ ∈ L
when λ = µ + w,λ′ = µ′ + w′:

y(1) = (λ′ + b − λ)mod 2π,

y(2) = (−µ′ + µ + b′)mod 2π,
(2.8)

y(3) = (−µ′ + b − λ)mod 2π,

y(4) = (λ′ + µ + b′)mod 2π.
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Also let

sinc(y) = sin
(

n + 1

2
y

)/(
n + 1

2
y

)
.(2.9)

THEOREM 1. If λ = µ + w,

EIn(λ,µ) = ∑
b∈L

fb(µ)
sin(((n + 1)/2)y(b,w))

((n + 1)/2)y(b,w)
+ O

(
logn

n

)
(2.10)

with uniformity in w,µ when Assumption 1 is satisfied.

THEOREM 2. Assumption 1 and λ = µ + w,λ′ = µ′ + w′ imply that

cov
(
In(µ + w,µ), In(µ

′ + w′,µ′)
)

=
{∑

b∈L

fb(µ
′ + w′) sinc(y(1)) + O

(
logn

n

)}

×
{ ∑

b′∈L

fb′(−µ′) sinc(y(2)) + O

(
logn

n

)}
(2.11)

+
{∑

b∈L

fb(−µ′) sinc(y(3)) + O

(
logn

n

)}

×
{ ∑

b′∈L

fb′(µ′ + w′) sinc(y(4)) + O

(
logn

n

)}
.

Theorem 2 almost immediately implies Corollary 1.

COROLLARY 1. Assumption 1 implies that

cov
(
f̂w(η), f̂w′(η′)

)
= ∑

b,b′∈L

∫ π

−π

∫ π

−π
fb(µ

′ + w′)fb′(−µ′) sinc(y(1)) sinc(y(2))Kn(µ − η)

× Kn(µ
′ − η′) dµdµ′

(2.12)
+ ∑

b,b′∈L

∫ π

−π

∫ π

−π
fb(−µ′)fb′(µ′ + w′) sinc(y(3)) sinc(y(4))

× Kn(µ − η)Kn(µ
′ − η′) dµdµ′

+ O

(
logn

n

)
.
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Further,

cov
(
f̂w(η), f̂w′(η′)

) = O

(
1

nbn

)
+ O

(
logn

n

)
.(2.13)

Bounds on supw |Un(w) − EUn(w)| will be obtained by making use of Theo-
rem 3. Let

Vn(w) = (n + 1){Un(w) − EUn(w)}.(2.14)

Cumulants of Vn(w) will be estimated and an argument akin to Brillinger [2]
will be used to gauge supw |Vn(w)|.

THEOREM 3. Let {Xk} be a Gaussian sequence with almost periodic covari-
ance function satisfying Assumptions 1 and 2. Then

lim sup
n→∞

sup
w

|Vn(w)|/(n logn)1/2 ≤ 25/2q

(∑
j

c(j)

)
,(2.15)

with probability 1 where q is the number of elements in L.

The arguments used to prove Theorem 3 will imply the following two corollar-
ies.

COROLLARY 2. Let c > 0. Then under the conditions of Theorem 3, there is
a constant C > 0 such that

P

[
sup
w

|Un(w) − EUn(w)| > c

]
≤ exp[−Cn1/2(logn)1/2].(2.16)

COROLLARY 3. If c > 0 is fixed but large,

P

[
sup
w

|Un(w) − EUn(w)| > 2cn−1/2(logn)1/2
]

≤ exp
{
−c

2
logn

}
.(2.17)

An additional corollary indicates that supw |Vn(w)| diverges as n → ∞.

COROLLARY 4. Assume that f0(·) is not identically zero. Then under Assump-
tions 1–3, there are a countable number of distinct wi in the neighborhood of zero
such that, for each finite subcollection C,

1√
n + 1

Vn(wi), wi ∈ C(2.18)

are jointly asymptotically normal and independent with variances each greater
than a constant ζ > 0. Further,

1 = o

[
sup
w

|Vn(w)|
]

(2.19)

in probability as n → ∞.
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We now describe the estimation procedure. Fix a given level δ > 0. Consider
the number of b ∈ L with ∣∣∣∣ ∫ π

−π
fb(µ)dµ

∣∣∣∣ > δ.(2.20)

The following procedure will yield estimates wn(b) of b ∈ L satisfying (2.20)
which are such that n|wn(b) − b| < an = n−1/5 except for a set of probability
less than O(logn/n2) if n is sufficiently large (i.e., as n → ∞). Divide the range
(it can be taken as −π ≤ w ≤ π ) of w into blocks of length 1/n and compute the
global maximum of | ∫ π

−π In(µ + w,µ)dµ| in each block. Throw out the blocks

with maxima that fall less than or equal to δ + (
logn

n
)1/4. Also, if there are two

maxima located within 1/n of each other, throw out the block with the smaller
maximum. As n → ∞, the locations wn(b) at which the remaining maxima oc-
cur satisfying (2.20) are such that n|wn(b) − b| < an = n−1/5 except for a set of
probability less than O(logn/n2) as n → ∞.

We sketch the argument for this. Using (2.10), it is seen that

EUn(w) = ∑
b∈L

sin((n + 1)/2(b − w))

(n + 1)/2(b − w)

∫ π

−π
fb(µ)dµ + O

(
logn

n

)
.

The maximum of ∣∣∣∣sin((n + 1)/2)(b − w)

((n + 1)/2)(b − w)

∣∣∣∣∣∣∣∣ ∫ π

−π
fb(µ)dµ

∣∣∣∣(2.21)

is clearly at w = b given Assumption 1. The contribution from the other terms in
|EUn(w)| with b′ �= b, b′ ∈ L is asymptotically O( 1

n
) in a neighborhood {w : |b −

w| < minb′ �=b,b′∈L
1
2 |b′ − b|} of b ∈ L. First note that, uniformly in w,

∣∣|Un(w)| − |EUn(w)|∣∣ ≤ C1

(
logn

n

)1/2

(2.22)

except on a set of probability less than O(n−2) by Corollary 3. We shall show that
the local maximum wn(b) converging to b must be such that |n(wn(b) − b)| <

n−1/5 except for a set of probability less than O(logn/n2). First note that∣∣∣∣∣∣∣∣ ∫ π

−π
In(µ + w,µ)dµ

∣∣∣∣ − ∣∣∣∣ ∫ π

−π
fb(µ)dµ

sin((n + 1)/2)(b − w)

((n + 1)/2)(b − w)

∣∣∣∣∣∣∣∣
≤ C2

(
logn

n

)1/2

in a fixed nontrivial interval I (b, ε) = {w : |b − w| < ε},0 < ε < 1
2 , containing b

but excluding the other points b′ ∈ L except for a set of probability O(logn/n2).
The value of | ∫ In(µ + w,µ)dµ| at w = b is at least

©1 :=
∣∣∣∣ ∫ π

−π
fb(µ)dµ

∣∣∣∣ − C2

(
logn

n

)1/2

.
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However, the value outside |n(w − b)| < n−1/5, but inside I (b, ε), of | ∫ In(µ +
w,µ)dµ|, is at most

©2 :=
∣∣∣∣ ∫ π

−π
fb(µ)dµ

∣∣∣∣sinn−1/5

n−1/5 + C2

(
logn

n

)1/2

,

and since

sinn−1/5

n−1/5 = 1 − n−2/5

3! + O(n−4/5),

©1 is larger than ©2 for n sufficiently large. Consequently, we have the following
theorem.

THEOREM 4. Let δ > 0 and Assumptions 1–3 hold. There are then estimates
wn(b) of values b ∈ L with | ∫ π

−π fb(µ)dµ| > δ such that n|wn(b) − b| < n−1/5

except for a set of probability O(logn/n2) if n is sufficiently large.

A similar but more detailed argument yields a better estimate for |wn(b) − b|.

COROLLARY 5. Under the assumptions of Theorem 4, (n + 1)(b − wn(b)) =
O(n−1/4(logn)1/4) and [(n+ 1)(b −wn(b))]2 = O(supw |Un(w)−EUn(w)|) ex-
cept for a set of probability O(logn/n2).

The following results show that if one uses these estimates wn(b) of b to esti-
mate the spectral densities at b, the bias and variance are asymptotically as good
as for the estimates with b ∈ L given.

THEOREM 5. If | ∫ π
−π fb(µ)dµ| > δ and Assumptions 1–3 hold,

Ef̂wn(b)(η)

= E

[
sin((n + 1)/2)y(b,wn(b))

((n + 1)/2)y(b,wn(b))

∫ π

−π
fb(µ)Kn(µ − η)dµ

]
+ O

(
logn

n

)
and the right-hand side is

fb(µ) + b2
n

2
f ′′

b (µ)

∫ ∞
−∞

x2K(x)dx + O(b2
n) + O(n−1/2(logn)1/2) + O

(
1

nbn

)
.

Corollaries 2 and 3 are used in the derivation of this result.

THEOREM 6. Let δ > 0 and Assumptions 1–3 hold. If∣∣∣∣ ∫ π

−π
fb(µ)dµ

∣∣∣∣ > δ,

∣∣∣∣ ∫ π

−π
fb′(µ)dµ

∣∣∣∣ > δ
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for b, b′ ∈ L, then

cov
(
f̂wn(b)(η), f̂wn(b′)(η

′)
) = O

(
1

nbn

)
+ O

(
logn

n

)
as n → ∞, bn ↓ 0, nbn → ∞.

THEOREM 7. If | ∫ π
−π fb(µ)dµ| > δ and Assumptions 1–3 hold with f0(·) not

identically zero, setting γ (x) = 1 if x = 0 mod 2π and 0 otherwise, then

var
(
f̂wn(b)(η)

)
= 2π

nbn

[
f0(η + b)f0(−η)

+ ∑
b′∈L

γ (−2η + b′ − b)|fb′(−η)|2
]∫ ∞

−∞
K2(x) dx + O

(
logn

n

)
.

A comparison of Theorems 5 and 7 with Proposition 5.1 and Corollary 5.1
in [15] indicate that the bias and variance of the spectral estimates using estimates
wn(b) of b ∈ L have the same behavior asymptotically as spectral estimates as-
suming complete knowledge of b ∈ L.

3. Examples. In this section we give a simulated example. Consider the am-
plitude modulated (AM) signal model in communication

y(t) = cos(ω1t)Z1(t) + cos(ω2t)Z2(t), EZi(t) = 0, i = 1,2,(3.1)

where Z1(t) and Z2(t) are independent stationary processes with spectral den-
sities f1(λ) and f2(λ) at frequency λ, respectively. Then {y(t)} is harmonizable
with almost periodic covariance function and spectral support lines on λ = µ,
λ = µ ± 2ω1 and λ = µ ± 2ω2. We consider (3.1) with ω1 = π

4
√

3
,ω2 = π

3
√

2
,

and Z1(t) = εt + 0.5εt−1,Z2(t) = ηt + 0.3ηt−1, where εt and ηt are independent
standard Gaussian sequences. In this case, y(t) = ∫

eitλ dZy(λ) with dZy(λ) =
1
2 [dz1(λ ∓ ω1) + dz2(λ ∓ ω2)] and Zi(t) = ∫

eitλ dzi(λ) for i = 1,2. Therefore,
the spectrum of {y(t)} is given by

E[dZy(λ)dZy(µ)]
= 1

4

{(
f1(λ ∓ ω1) + f2(λ ∓ ω2)

)
δλ,µ

+ f1(λ ∓ ω1)δλ,µ±2ω1 + f2(λ ∓ ω2)δλ,µ±2ω2

}
.

Given a realization of {y(t)}, we are interested in estimating ω1 and ω2 and the
spectral densities on the lines given by λ = µ ± 2ω1 and λ = µ ± 2ω2.

As an example, a simulated realization of {y(t)} for t = −512 to 512 is gen-
erated. A stretch of {Z1(t)} and {y(t)} are given in Figure 1. The periodogram
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FIG. 1. Simulated time series with z1(t), z2(t) independent stationary time series.
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of {y(t)} is given in Figure 1 also. There is no apparent information on ω1 and
ω2 in the periodogram. The Un(b) statistic of {y(t)} is computed for a range of
b’s. For b = bj = 2πj

1025 with j = 1,2, . . . ,512, Un(b) and E(Un(b)) are given in
Figure 2(a)–(f).

Two spikes are apparent at frequencies near 2ω1 and 2ω2. The largest two b’s
in |Un(b)| occurred at ω̂1 = 0.45406 and ω̂2 = 0.73938. When the Un(b) are cal-
culated at a more refined grid with b = bj = 2πj

4097 , j = 1,2, . . . ,2048, the largest
|Un(b)| occurred at ω̂1 = 0.45329 and ω̂2 = 0.74015. These latter values are closer
to the true values ω1 = 0.45345 and ω2 = 0.74048. These are plotted in Figure
2(g) and (h). The scale in figures (g) and (h) differs from that in figures (e) and (f)
since there is leakage at frequencies very close to zero because the computation
at (e) and (f) is at a more refined set of frequencies. The zero frequency corre-
sponds to the diagonal line which is the support line of the “power spectrum” of
the process. Therefore, the value of |Un(0)| is relatively large. It is this mass that
leaks.

A large value of |Un(b)| suggests that λ = µ + b is a spectral support line.
Figure 3 gives the plots of spectral estimates on these estimated support lines. The
dashed line gives the theoretical spectral density if the intercept b is known exactly.
In these cases the imaginary part is zero. For the diagonal line λ = µ, there is no
need to estimate the intercept. The estimated spectral densities on each line when
the intercepts are exactly known are given by the solid lines. The dotted lines are
spectral estimates when the intercepts are estimated with a crude search, while the
dash-dot lines are spectral estimates when the intercepts are estimated by the more
refined search.

When the sample size of {y(t)} is increased to t = −2048 to 2048, we have
more resolution as expected.

These graphs show that intercepts of these support lines or frequencies or “pe-
riods” of the covariance function can be effectively estimated using Un(b). These
intercepts can be estimated sufficiently accurately to give accurate estimates of the
spectral densities on the spectral support lines.

APPENDIX

For the proofs, the following will be useful. Let

Dn(x) = sin((n + 1)/2)x

sin(x/2)
, D̃n(x) = sin((n + 1)/2)x

x/2
.(A.1)

LEMMA A.1. If |y| ≤ π ,∫ π

−π
Dn(x + y)Dn(−x)dx =

∫ π

−π
D̃n(x + y)D̃n(−x)dx + O(logn),(A.2)

with O uniform in y.
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FIG. 2. Un(b) statistics of {y(t)}. Frequencies are computed for increments of 2π /1025 for (a)–(f)
and for increments of 2π /4097 for (g)–(h).
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FIG. 3. Spectral density estimates at different intercepts; the theoretical part is given by the dashed
- - - line, estimated part with intercept known is given by the solid line; estimated part with intercept
estimated at lower resolution is given by the dotted · · · line; estimated part with intercept estimated at
higher resolution is given by dash-dot - · - line. Both real and imaginary parts are given. Theoretical
imaginary parts are all zero and they are not plotted.
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The argument given in [15] for Lemma 7.2 holds for this case.

PROOF OF THEOREM 1. Given Xt, t = −n/2, . . . , n/2, then

EIn(λ,µ) = 1

2π(n + 1)

∑
b∈L

∫ π

−π
Dn(v + b − µ − w)Dn(−v + µ)fb(v) dv

(A.3)
= ∑

b∈L

G1,

with G1 = 1
2π(n+1)

∫ π
−π Dn(v−µ+y(b,w))Dn(−v+µ)fb(v) dv. The continuous

differentiability of fb implies that

fb(v) = fb(µ) + (v − µ)f ′
b(v

∗),(A.4)

with v∗ between µ and v. Then G1 = G2 + G3 with [denoting y(b,w) by y]

G2 = 1

2π(n + 1)

∫ π

−π
Dn(v − µ + y)Dn(−v + µ)(v − µ)f ′

b(v
∗) dv,

G3 = 1

2π(n + 1)
fb(µ)

∫ π

−π
Dn(x + y)Dn(−x)dx.

It is clear that |G2| = O(
logn

n
). Also,

G3 = fb(µ)
1

2π(n + 1)

∫ π

−π
D̃n(x + y)D̃n(−x)dx + O

(
logn

n

)
using Lemma A.1. To simplify the notation, we define{

I∑
i=1

∫
Ai

}
f (x) dx =

I∑
i=1

∫
Ai

f (x) dx.

Now

G4 ≡ 1

2π(n + 1)

∫ π

−π
D̃n(x + y)D̃n(−x)dx

= 1

2π(n + 1)
(A.5)

×
{∫ ∞

−∞
−

∫
|z|>(n+1)π

}
sin(1/2)(z + (n + 1)y)

(z + (n + 1)y)/2(n + 1)

sin(1/2)z

z/2(n + 1)

dz

n + 1

= G5 − G6,

with G5 and G6 the two integrals of the previous line. Notice that

|G6| ≤ 1

2π

{∫
(n+1)π+1≥|z|≥(n+1)π

+
∫

2(n+1)π≥|z|≥(n+1)π+1
+

∫
|z|≥2(n+1)π

}
∣∣∣∣sin(1/2)(z + (n + 1)y)

(z + (n + 1)y)/2

sin(1/2)z

z/2

∣∣∣∣dz,
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with the integrand less than or equal to 1/((n + 1)π) in the first integral, less
than or equal to 1

(n+1)π
(z + (n + 1)y)−1 in the second integral and less than 2/z2

in the third integral (because |y| ≤ π ). These bounds are enough to insure that
G6 = O(

logn
n

). In evaluating G5, we note that

sin(1/2)(z + (n + 1)y)

(z + (n + 1)y)/2
=

∫ ∞
−∞

1[−1/2,1/2](x)eix(z+(n+1)y) dx.(A.6)

The Parseval relation implies that G5 = sinc(y). Applying the above bounds for
the Gi ’s proves the theorem. �

PROOF OF THEOREM 2. By a direct calculation, we have four expressions
of the same type as that analyzed in Theorem 1. Using (2.8) and (2.10), formula
(2.11) is obtained. �

PROOF OF COROLLARY 1. The first equation follows directly from Theo-
rem 2. The order of magnitude statement is obtained by making use of the Schwarz
inequality. �

PROOF OF THEOREM 3. First notice that, for distinct indices in the range
−n/2 to n/2,

cum
(
X2

j1
,X2

j2
, . . . ,X2

js

) = 2s−1
∑
ν

rj1,jα2
rjα2 ,jα3

. . . rjαs ,j1,(A.7)

where ν is a listing of the (s − 1)! irreducible sequences 1 → α2 → ·· · → αs → 1
with α2, . . . , αs distinct choices of j2, . . . , js . The case in which the indices are not
distinct is obtained from (A.7) by making the appropriate identification of identical
indices. By (2.5), ∣∣rj1,j2

∣∣ ≤ ∑
b∈L

|cb(j1 − j2)|.(A.8)

Since the cb’s are uniformly bounded by a summable c(·) ≥ 0,∣∣rj1,jα2
, rjα2 ,jα3

. . . rjαs ,j1

∣∣ ≤ qsc
(
j1 − jα2

)
c
(
jα2 − jα3

) · · · c(
jαs − j1

)
.(A.9)

We shall carry out an argument for Re{Vn(b)} alone since that for Im{Vn(w)} is
similar. Let σn be the variance of Re{Vn(w)}. Then

logE exp[α Re{Vn(w)}] − α2σn/2
(A.10)

≤ (n + 1)

∞∑
s=3

(2q)sαs

( ∞∑
j=−∞

c(j)

)s/
s

since the sth cumulant of Vn(b) is less than or equal to (s − 1)!(n + 1)(2q)s ×
(
∑

j c(j))s. If α > 0 is sufficiently small,

logE exp[α Re{Vn(b)}] ≤ (n + 1)q2

(∑
j

c(j)

)2

(1 + ε)α2(A.11)
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since

0 ≤ σn = var(Re{Vn(w)})

= var

( n/2∑
k=−n/2

X2
k cos(kw)

)

= 2
n/2∑

j,k=−n/2

r2
j,k cos(jw) cos(kw)

< 2(n + 1)q2

(∑
j

c(j)

)2

if {Xk} is not the trivial process that is identically zero. By Lemma 2.1 and Corol-
lary 2.1 of [19] (see also [21], Chapter 10, Theorem 7.28),

sup
w

|Re{Vn(w)}| ≤ sup
j

|Re{Vn(uj )}|/(1 − 6πnR−1),(A.12)

with uj = 2πj/R, j = 0,1, . . . ,R − 1 and R � n. The simple argument for this
follows from the fact that maxλ |p′(λ)| ≤ nmaxλ |p(λ)| for a trigonometric poly-
nomial p(λ) = ∑n

v=−n αv exp(ivλ) of order n (Bernstein’s inequality, page 11,
[21], vol. 2). Then for λj = 2πj/R, j = 0,1, . . . ,R − 1,

max|λ|≤π
|p(λ)| ≤ max|j |≤R

|p(λj )| + 2π

R
max|λ|≤π

|p′(λ)|.(A.13)

Equation (A.13) implies that(
1 − 2nπ

R

)
max|λ|≤π

|p(λ)| ≤ max|j |≤R
|p(λj )|

and (A.12) follows. Then

E exp
{
α sup

w
|Re{Vn(w)}|

}

≤ E exp
{
α supj |Re{Vn(uj )}|

(1 − 6πnR−1)

}
(A.14)

≤ ∑
j

E exp
{
α|Re{Vn(uj )}|
(1 − 6πnR−1)

}

≤ 2 exp
{

logR + (1 + ε)(n + 1)q2(
∑

c(j))2α2

[(1 − 6πnR−1)2]
}
.

Our objective is to show by an appropriate choice of a and R that

P

[
sup
w

|Re{Vn(w)}| ≥ 2a

]
< Cn−1−δ(A.15)

for some constant C. By (A.14) and Chebyshev’s inequality, the probability on the
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left-hand side of (A.15) is less than or equal to

exp{−2aα}2 exp

{
logR + (1 + ε)(n + 1)q2

(A.16)

×
(∑

j

c(j)

)2

α2/[(1 − 6πnR−1)2]
}
.

Given ε, δ > 0, set

a2 = (1 + ε)(2 + δ)q2(n + 1) log(n + 1)

(∑
j

c(j)

)2

,

(A.17)
R = n logn

and

α = a(1 − 6πnR−1)2
/[

(1 + ε)(n + 1)q2

(∑
j

c(j)

)2]
.(A.18)

On inserting these expressions for a,α and R, (A.16) becomes

2 exp[−(1 + δ) log(n + 1)] ≤ Cn−1−δ.(A.19)

The bound Cn−1−δ has been obtained for sufficiently large n with an appropriate
choice for the constant C. Thus,

P

[
sup
w

|Re{Vn(w)}|/(n logn)1/2 ≥ 2{(1 + ε)(2 + δ)}1/2q

(∑
j

c(j)

)]
(A.20)

≤ Cn−1−δ.

By applying the Borel–Cantelli lemma to (A.20), one can see that, for η > 0,

lim sup
n→∞

sup
w

|Re{Vn(w)}|/(n logn)1/2 ≤ 23/2q(1 + η)

(∑
j

c(j)

)
.(A.21)

Since the same result holds for supw |ImVn(w)|, we obtain

lim sup
n→∞

sup
w

|Vn(w)|/(n logn)1/2 ≤ 25/2(1 + η)q

(∑
j

c(j)

)
.(A.22)

�

PROOF OF COROLLARY 2. Notice that the probability of (A.15) can be rewrit-
ten as P [supw |Re{Un(w) − EUn(w)}| ≥ 2a

n+1 ]. Let c > 0 and a = cn/4,R =
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n logn and α = n−1/2(logn)1/2. Using (A.16), we see that then there is a C > 0
such that

P

[
sup |Re{Un(b) − EUn(b)}| > c

2

]
≤ exp(−Cn1/2(logn)1/2).

The same type of inequality holds for Im{Un(b) − EUn(b)}. Thus, the corollary
holds. �

PROOF OF COROLLARY 3. The arguments are similar but now set a =
cn1/2(logn)1/2,R = n logn and α = n−1/2(logn)1/2 with c > 0 fixed but large.

�

PROOF OF COROLLARY 4. Trivially,

sup
w

|Un(w) − EUn(w)|2 ≥ 1

2π

∫ π

−π
|Un(w) − EUn(w)|2 dw

=
n/2∑

j=−n/2

(X2
j − EX2

j )
2 1

n + 1
.

The covariance of 1
n+1(Un(w) − EUn(w)) and 1

n+1(Un(η) − EUn(η)) is

= 1

(n + 1)2

n/2∑
j,k=−n/2

cov(X2
j ,X

2
k)e

−ijw+ikη,

with cov(X2
j ,X

2
k) = 2r2

j,k since {Xt } is a Gaussian process. But then

(1) := 1

(n + 1)2

n/2∑
j,k=−n/2

{∑
b∈L

eibj cb(j − k)

}2

e−ijw+ikη

= 2

(n + 1)2

× ∑
b,b′∈L

∫ π

−π

sin ((n + 1)/2)(b + b′ − w + α)

sin(1/2)(b + b′ − w + α)

sin((n + 1)/2)(η − α)

sin(1/2)(η − α)

× fb ∗ fb′(α) dα,

where “∗” denotes convolution. If η = w−b−b′, we essentially get a Fejér kernel
centered at this point and so

(1) = 4π

n + 1

∑
b,b′∈L

δ(η − w + b + b′)fb ∗ fb′(η) + O

(
1

n2

)
if there are a finite number of b in L. Notice that, for η = w, we get

(1) = 2π

n + 1

∑
b∈L

fb ∗ f−b(η) + O

(
1

n2

)
.
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We first show joint asymptotic normality of Un(w) − EUn(w) for any finite num-
ber of w’s. Also, there are an infinite number of wi in a neighborhood of zero such
that wi − wj + b + b′ �= 0 for any b, b′ ∈ L. For joint asymptotic normality, we
have to deal with

m∑
j=1

[Un(wj ) − EUn(wj )]αj .(A.23)

The argument for estimates of the cumulants of Vn(b) leading to Theorem 3 still
holds for the sth cumulant of (A.23) with the additional factor (

∑ |αj |)s . The
asymptotic variance is

4π

n + 1

∑
j,j ′

αjαj ′
∑

b,b′∈L

δ(wj − wj ′ + b + b′)fb ∗ fb′(wj ) + O

(
1

n2

)
.(A.24)

We now consider conditions for positivity of the coefficient of 4π
n+1 .

We trivially get asymptotic normality for
√

n
∑m

j=1 αj [Un(wj )−EUn(wj )] but
with a possibly singular distribution because the sth cumulants with s > 2 all
tend to zero. The asymptotic variance of Un(wj ) − EUn(wj ) is 4π

n+1
∑

b∈L fb ∗
f−b(wj ) + O( 1

n2 ). Now f0 ∗ f0(0) = ∫ π
−π f0(w)2 dw > 0 if f0 is not identically

zero. Further, for b ∈ L,

fb ∗ f−b(0) =
∫ π

−π
fb(w)f−b(−w)dw =

∫ π

−π
|fb(w)|2 dw ≥ 0.

Thus,
∑

b∈L fb ∗ f−b(0) > 0 and this implies
∑

b∈L fb ∗ f−b(η) > ζ > 0 for η in
some neighborhood of zero. But there are a countable number of wi �= 0 in this
neighborhood such that wi − wj + b − b′ �= 0 for any b, b′ ∈ L. Therefore, the√

n[Un(wj ) − EUn(wj )] are asymptotically jointly normal and independent with
variance greater than δ > 0. Therefore,

1 = o

[
sup
wi

∣∣√n[Un(wi) − EUn(wi)]
∣∣] = o

[
sup
w

∣∣√n[Un(w) − EUn(w)]∣∣]
in probability. We have the corollary. �

PROOF OF COROLLARY 5. The proof is similar to that of Theorem 4 and is
omitted. �

PROOF OF THEOREM 5. If λ = µ + w, Theorem 1 gives

EIn(λ,µ) = ∑
b∈L

|y(b,w)|≤π

fb(µ)
sin(((n + 1)/2)y(b,w))

((n + 1)/2)y(b,w)
+ O

(
logn

n

)
.

Since

f̂wn(η) =
∫ π

−π
In(µ + wn,µ)Kn(µ − η)du,
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it follows that

Ef̂wn(b)(η) = ∑
b′∈L

E

[
sin((n + 1)/2)y(b′,wn(b))

((n + 1)/2)y(b′,wn(b))

]

×
∫ π

−π
fb′(µ)Kn(µ − η)dµ + O

(
logn

n

)
,

E

[
sin((n + 1)/2)y(b,wn(b))

((n + 1)/2)y(b,wn(b))

]
= (1) + (2),

where

(1) := E

[
sin((n + 1)/2)y(b,wn(b))

((n + 1)/2)y(b,wn(b))
; ∣∣n(

b − wn(b)
)∣∣ ≤ kn−1/4(logn)1/4

]
,

(2) := E

[
sin((n + 1)/2)y(b,wn(b))

((n + 1)/2)y(b,wn(b))
; ∣∣n(

b − wn(b)
)| > kn−1/4(logn)1/4

]
,

with E[f (X);A] := ∫
A f (x) dP (x) where P(·) is the distribution of X. Now

(1) = E
[
1 − [

n
(
b − wn(b)

)]2
/3!

+ o
([

n
(
b − wn(b)

)]2); ∣∣n(
b − wn(b)

)∣∣ ≤ kn−1/4(logn)1/4]
.

By Corollary 3, 1 ≥ (1) ≥ (1 − k2n−1/2(logn)1/2)(1 − 1
n
), while |(2)| ≤ 1

n
if k is

large enough. Therefore,∣∣∣∣E[
sin((n + 1)/2)y(b,wn(b))

((n + 1)/2)y(b,wn(b))

]
− 1

∣∣∣∣ ≤ k2n−1/2(logn)1/2.

Now if b′ �= b consider

E

[
sin((n + 1)/2)y(b′,wn(b))

((n + 1)/2)y(b′,wn(b))

]
= (1′) + (2′),

where

(1′) := E

[
sin((n + 1)/2)y(b′,wn(b))

((n + 1)/2)y(b′,wn(b))
; ∣∣n(

b − wn(b)
)∣∣ > c

]
,

(2′) := E

[
sin((n + 1)/2)y(b′,wn(b))

((n + 1)/2)y(b′,wn(b))
; ∣∣n(

b − wn(b)
)∣∣ ≤ c

]
.

By Corollary 2 |(1′)| ≤ exp(−Cn1/2(logn)1/2) + O(n−2), |(2′)| ≤ C/n. Notice
that |(n+1

2 )(b−wn(b))|2 ≤ k sup |Un(w)−EUn(w)| except for a set of probability
O(n−2), which implies

P
[∣∣(n + 1)

(
b − wn(b)

)∣∣ ≤ cn−1/2(logn)1/2] ≥ 1 − exp[−c′ logn]
for some c′ and so P [|(n + 1)(b − wn(b))| > cn−1/2(logn)1/2] ≤ exp[−c′ logn].
These estimates imply that, if fb is twice continuously differentiable, Ef̂wn(b)(η) =
fb(η) + b2

n

2 f ′′
b (η)

∫
x2K(x)dx + o(b2

n) + O(n−1/2(logn)1/2). �
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PROOF OF THEOREM 6. First notice that

cov
(
f̂wn(b)(η), f̂wn(b′)(η

′)
)

= E
[
E

[
f̂wn(b)(η)f̂wn(b′)(η

′)|wn(b) = wn,wn(b
′) = w′

n

]]
− Ef̂wn(b)(η)Ef̂wn(b′)(η

′)

= E
[
cov

(
f̂wn(b)(η), f̂wn(b′)(η

′)|wn(b) = wn,wn(b
′) = w′

n

)]
(A.25)

+ E
[
E

(
f̂wn(b)(η)|wn(b) = wn,wn(b

′) = w′
n

)
× E

(
f̂wn(b′)(η

′)|wn(b) = wn,wn(b
′) = w′

n

)]
− Ef̂wn(b)(η)Ef̂wn(b′)(η

′).
The estimate for the first term on the right-hand side of (A.25) is obtained by

making use of Corollary 1. The remaining terms on the right-hand side of (A.25)
can be seen to be∑

b′′,b′′′∈L

cov
[

sin((n + 1)/2)y(b′′,wn(b))

((n + 1)/2)y(b′′,wn(b))
,

sin((n + 1)/2)y(b′′′,wn(b
′))

((n + 1)/2)y(b′′′,wn(b′))

]

×
∫ π

−π
fb(µ)Kn(µ − η)dµ

∫ π

−π
fb′(µ)Kn(µ − η′) dµ + O

(
logn

n

)
.

Of course, ∣∣ cov
(
sincy

(
b′′,wn(b)

)
, sincy

(
b′′′,wn(b

′)
))∣∣

≤ {
var

(
sincy

(
b′′,wn(b)

))
var

(
sincy

(
b′′′,wn(b

′)
))}1/2

.

Notice that var(sincy(b′,wn(b))) is

E
[(

sincy
(
b′′,wn(b)

))2] − (
E

[
sincy

(
b′′,wn(b)

)])2

= E
[(

1 + {(
sincy

(
b′′,wn(b)

)) − 1
}
)2] − [

E
(
1 + {

sincy
(
b′′,wn(b)

) − 1
})]2

= E
[{

sincy
(
b′′,wn(b)

) − 1
}2] − (

E
[{

sincy
(
b′′,wn(b)

) − 1
}])2

.

One has to consider the case in which b = b′′ and that in which b �= b′′. Also,
one should note that the expression above is less than or equal to E[{sincy(b′′,
wn(b)) − 1}2]. If b = b′′,

E
[{

sincy
(
b,wn(b)

) − 1
}2; ∣∣n(

b − wn(b)
)∣∣ ≤ kn−1/4(logn)1/4]

= E

[((
((n + 1)/2)(b − wn(b))

3!
)2

+ o

(
((n + 1)/2)(b − wn(b))

3!
)2)2

;
∣∣n(

b − wn(b)
)∣∣ < kn−1/4(logn)1/4

]
≤ C logn/n,
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while, by Corollaries 3 and 4,

E
[{

sincy
(
b,wn(b)

) − 1
}2; ∣∣n(

b − wn(b)
)∣∣ > kn−1/4(logn)1/4] ≤ c/n

if k is large enough. If b �= b′′,

E
[{

sincy
(
b′′,wn(b)

) − 1
}2; ∣∣n(

b − wn(b)
)∣∣ ≤ c

] ≤ c/n

because wn(b) is close to b and b′′ − wn(b) is large, while

E
[{

sincy
(
b′′,wn(b)

) − 1
}2; ∣∣n(

b − wn(b)
)∣∣ > c

]
≤ e−Cn1/2(logn)1/2 + O(n−2)

follows by Corollary 2 as n → ∞. The proof of Theorem 6 is complete. �

PROOF OF THEOREM 7.

var
(
f̂wn(b)(η)

) = E
(
var

(
f̂wn(b)(η)|wn(b) = wn

))
+ E

[
E

(
f̂wn(b)(η)|wn(b) = wn

)2]
(A.26)

− {
Ef̂wn(b)(η)

}2
.

We first consider the first term on the right-hand side:

var
(
f̂wn(b)(η)|wn(b) = wn

)
=

∫ π

−π

∫ π

−π

[{∑
b∈L

fb(µ
′ + wn) sinc(y(1)) + O

(
logn

n

)}

×
{ ∑

b′∈L

fb′(−µ′) sinc(y(2)) + O

(
logn

n

)}

+
{∑

b∈L

fb(−µ′) sinc(y(3)) + O

(
logn

n

)}

×
{ ∑

b′∈L

fb′(µ′ + wn) sinc(y(4)) + O

(
logn

n

)}]

× Kn(µ − η)Kn(µ
′ − η)dµdµ′.

Making use of the symmetry of K about zero on taking the expectation, we obtain

var
(
f̂wn(b)(η)|wn(b) = wn

)
= 2π

nbn

[
f0(η + b)f0(−η)

+ ∑
b′∈L

γ (−2η + b′ − b)|fb′(−η)|2
]∫ ∞

−∞
K2(x) dx + O

(
logn

n

)
.
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The term

E
[
E

(
f̂wn(b)(η)|wn(b) = wn

)]2 − {
Ef̂wn(b)(η)

}2

can be shown to be O(
logn

n
) just as in the discussion of the corresponding term in

the proof of Theorem 6. �

REFERENCES

[1] ALEKSEEV, V. G. (1988). Estimating the spectral densities of a Gaussian periodically corre-
lated stochastic process. Problems Inform. Transmission 24 109–115. MR0955986

[2] BRILLINGER, D. (1975). Time Series: Data Analysis and Theory. Holt, Rinehart and Winston,
New York. MR0443257

[3] DANDAWATE, A. V. and GIANNAKIS, G. B. (1994). Nonparametric polyspectral estimators
for kth order (almost) cyclostationary processes. IEEE Trans. Inform. Theory 40 67–84.

[4] DEHAY, D. and LESKOW, J. (1996). Functional limit theory for the spectral covariance estima-
tor. J. Appl. Probab. 33 1077–1092. MR1416228

[5] GARDNER, W. A. (1991). Exploitation of spectral redundancy in cyclostationary signals. IEEE
Signal Processing Magazine 8 (2) 14–36.

[6] GARDNER, W. A., ed. (1994). Cyclostationarity in Communications and Signal Processing.
IEEE Press, New York.

[7] GERR, N. and ALLEN, J. (1994). The generalized spectrum and spectral coherence of a har-
monizable time series. Digital Signal Processing 4 222–238.

[8] GERR, N. and ALLEN, J. (1994). Time-delay estimation for harmonizable signals. Digital
Signal Processing 4 49–62.

[9] GLADYSHEV, E. G. (1963). Periodically and almost-periodically correlated random processes
with a continuous time parameter. Theory Probab. Appl. 8 173–177.

[10] HURD, H. (1989). Nonparametric time series analysis for periodically correlated processes.
IEEE Trans. Inform. Theory 35 350–359. MR0999650

[11] HURD, H. and GERR, N. (1991). Graphical methods for determining the presence of periodic
correlation. J. Time Ser. Anal. 12 337–350. MR1131006

[12] HURD, H. and LESKOW, J. (1992). Strongly consistent and asymptotically normal estima-
tion of the covariance for almost periodically correlated processes. Statist. Decisions 10
201–225. MR1183203

[13] HURD, H., MAKAGON, A. and MIAMEE, A. G. (2002). On AR(1) models with periodic and
almost periodic coefficients. Stochastic Process. Appl. 100 167–185. MR1919612

[14] LESKOW, J. and WERON, A. (1992). Ergodic behavior and estimation for periodically corre-
lated processes. Statist. Probab. Lett. 15 299–304. MR1192541

[15] LII, K.-S. and ROSENBLATT, M. (2002). Spectral analysis for harmonizable processes. Ann.
Statist. 30 258–297. MR1892664

[16] LOÈVE, M. (1963). Probability Theory, 3rd ed. Van Nostrand, Princeton, NJ. MR0203748
[17] LUND, R., HURD, H., BLOOMFIELD, P. and SMITH, R. (1995). Climatological time series

with periodic correlation. J. Climate 8 2787–2809.
[18] TIAN, C. J. (1988). A limiting property of sample autocovariances of periodically corre-

lated processes with application to period determination. J. Time Ser. Anal. 9 411–417.
MR0995617

[19] WOODROOFE, M. B. and VAN NESS, J. W. (1967). The maximum deviation of sample spec-
tral densities. Ann. Math. Statist. 38 1558–1569. MR0216717

http://www.ams.org/mathscinet-getitem?mr=0955986
http://www.ams.org/mathscinet-getitem?mr=0443257
http://www.ams.org/mathscinet-getitem?mr=1416228
http://www.ams.org/mathscinet-getitem?mr=0999650
http://www.ams.org/mathscinet-getitem?mr=1131006
http://www.ams.org/mathscinet-getitem?mr=1183203
http://www.ams.org/mathscinet-getitem?mr=1919612
http://www.ams.org/mathscinet-getitem?mr=1192541
http://www.ams.org/mathscinet-getitem?mr=1892664
http://www.ams.org/mathscinet-getitem?mr=0203748
http://www.ams.org/mathscinet-getitem?mr=0995617
http://www.ams.org/mathscinet-getitem?mr=0216717


ALMOST PERIODICITY AND ESTIMATION 1139

[20] YAGLOM, A. M. (1987). Correlation Theory of Stationary and Related Random Functions 1,
2. Springer, Berlin. MR0893393, MR0915557

[21] ZYGMUND, A. (1959). Trigonometric Series 1, 2, 2nd ed. Cambridge Univ. Press. MR0107776

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA, RIVERSIDE

RIVERSIDE, CALIFORNIA 92521
USA
E-MAIL: ksl@stat.ucr.edu

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA, SAN DIEGO

LA JOLLA, CALIFORNIA 92093
USA
E-MAIL: mrosenblatt@ucsd.edu

http://www.ams.org/mathscinet-getitem?mr=0893393
http://www.ams.org/mathscinet-getitem?mr=0915557
http://www.ams.org/mathscinet-getitem?mr=0107776
mailto:ksl@stat.ucr.edu
mailto:mrosenblatt@ucsd.edu

	Introduction
	Results
	Examples
	Appendix
	References
	Author's Addresses

