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Abstract. The object of this paper is to show that under certain auxiliary assump-
tions a stationary autoregressive sequence has a best predictor in mean square that is
linear if and only if the sequence is minimum phase or is Gaussian when all moments
are finite.

1. Introduction. We consider a stationary autoregressive sequence, that is, a
stationary sequence xt satisfying the system of equations

(1.1) xt − φ1xt−1 − · · · − φpxt−p = ξt, t = · · · ,−1, 0, 1, · · ·

with the ξt’s independent identically distributed, the φi’s real and Eξt ≡ 0, Eξ2
t =

σ2 > 0. Let

(1.2) φ(z) = 1− φ1z − · · · − φpzp.

The system of equations is satisfied by a strictly stationary sequence (which is
uniquely determined) if and only if φ(z) has no roots of absolute value 1. In [4] a
simple result of the type considered in this paper was established for a first order
autoregressive scheme xt satisfying

(1.3) xt − βxt−1 = ξt, t = · · · ,−1, 0, 1, · · · , 0 < |β| < 1.

Clearly the best one-step predictor (predicting ahead) of xt+1 is the linear predictor
βxt. However, the best one-step predictor with time reversed for the process (1.3),

E(xt | xt+1)

is linear if and only if the distribution of xt is Gaussian. Let G be the distribution
function of ξt and let F the distribution function of xt. It is clear that F satisfies
the equation

F (·) = G(·) ∗ F (β−1·),
where the asterisk (∗) denotes the convolution operation. If ϕ is the characteristic
function of ξt, η the characteristic function of xt

η(τ) =
∞∏
j=0

ϕ(βjτ),
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and φ(τ1, τ2) = E exp(iτ1x−1 + iτ2x0) the joint characteristic function of x−1 and
x0, the following relation is satisfied:
(1.4)

φτ1(0, τ2) =
1
β
η′(τ2)− 1

β
ϕ′(τ2)η(βτ2) =

∫
exp(iτ2x)iE(x−1 | x0 = x) dF (x).

Let
G(x) =

∫ x

−∞
udG(u).

The relation (1.4) implies that E(x−1 | x0 = x) is given by

1
β
x− 1

β

{
G ∗ F (β−1·)

}
(dx)/F (dx).

A related problem for heavy-tailed distributions is considered in [2].
Factor the polynomial (1.2),

φ(z) = φ+(z)φ∗(z)

where
φ+(z) = 1− θ1z − · · · − θrzr 6= 0 for |z| ≤ 1,

φ∗(z) = 1− θr+1z − · · · − θpzs 6= 0 for |z| ≥ 1.

and r, s ≥ 0, r+s = p. Given that m1, . . . ,mr,mr+1, . . . ,mp are the p zeros of φ(z)
let |mi| > 1, i = 1, . . . , r and |mi| < 1, i = r + 1, . . . , p. Then

φ+(z) =
r∏
i=1

(
1−m−1

i z
)
, φ∗(z) =

p∏
i=r+1

(
1−m−1

i z
)
.

The autoregressive sequence (1.1) is called minimum phase if r = p and nonmini-
mum phase otherwise. If the sequence is minimum phase, clearly one can write

(1.5) xt =
∞∑
j=0

αjξt−j

where

(1.6) φ(z)−1 =
∞∑
j=0

αjz
j

and the αj ’s decay to zero exponentially fast as j → ∞. The relations (1.5) and
(1.6) imply that the σ-algebras generated by {ξj , j ≤ t} and {xj , j ≤ t} are the
same. This implies that in the minimum phase case the best predictor in mean
square of xt+1 given xj , j ≤ t, is linear and given by

x∗t =
∞∑
j=1

αjξt+1−j .

Our object is to show that in the nonminimum phase nonGaussian case, the best
predictor in mean square of xt+1 given xj , j ≤ t, is nonlinear if all moments of ξt
are finite and the roots mi, i = r + 1, . . . , p, are distinct. In Section 2 we show
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that the stationary solution of (1.1) is pth order Markovian. This implies that
the best one-step predictor in mean square in terms of the past is a function of
the p preceding variables. That the solution of (1.1) is pth order Markovian is
obvious in the minimum phase case since the solution is causal, implying that ξt is
independent of the past of the x process, that is xt−1, xt−2, . . . . In the nonminimum
phase case the xt process is noncausal and so ξt is not independent of the past of
the x process. The Markovian property of the x process is used in Section 3 where
the principal result on the nonlinearity of the best predictor in mean square of xt+1

given xj , j ≤ t, is derived in the nonminimum phase nonGaussian case when all the
moments of the ξt are finite and the roots mi, i = r + 1, . . . , p are distinct. One
should note that the first order autoregressive scheme with time reversed discussed
in this section is not minimum phase.

2. The Markov Property. Our object in this section is to show that the
stationary autoregressive sequence is pth order Markovian, whether it is minimum
phase or not. Part of the argument parallels one given in [1]. The argument is
carried out in the case r, s > 0, since it is obvious otherwise.

Introduce the causal and purely noncausal sequences

Ut = φ∗(B)xt , Vt = φ+(B)xt,

with B the one-step backshift symbol, that is, Bxt = xt−1. We then have

Ut =
∞∑
j=0

αjξt−j , Vt =
∞∑
j=s

βjξt+j

where

φ+(z)−1 =
∞∑
j=0

αjz
j , φ∗(z)−1 =

∞∑
j=s

βjz
−j .

Let us also note that we have

xt =
∞∑

j=−∞
ψjξt−j ,

where

(2.1) φ(z)−1 =
∞∑

j=−∞
ψjz

j .

We shall carry through the argument assuming the existence of positive density
functions. However, essentially the same argument can be carried through without
this assumption using a more elaborate notation. Let the density function of the ξ
random variables be g. The random variables U`, ` ≤ t, are independent of V`, ` ≥
t−s+1, and so the joint probability density function of (U1, . . . , Un, Vn−s+1, . . . , Vn)
is

hU (U1,...,Ur)

{
n∏

t=r+1

g (Ut − θ1Ut−1 − · · · − θrUt−r)
}
hV (Vn−s+1, . . . , Vn)
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where hU and hV are the joint probability density functions of (U1, . . . , Ur) and
(Vn−s+1, . . . , Vn) respectively. Consider the linear transformation Tn given by

U1
...
Us
Us+1

...
Un

Vn−s+1

...
Vn


=



U1
...
Us

xs+1 − θr+1xs − · · · − θpx1

...
xn − θr+1xn−1 − · · · − θpxn−s

xn−s+1 − θ1xn−s − · · · − θrxn−s+1−r
...

xn − θ1xn−1 − · · · − θrxn−r


= Tn



U1
...
Us
x1
...
xn


.

Using this transformation one can see that the joint density of (U1, . . . , Us, x1, . . . , xn)
is

hU

(
Ũ1 , . . . , Ũr

){ p∏
t=r+1

g
(
Ũt − θ1Ũt−1 − · · · − θrŨt−r

)}

×
{

n∏
t=p+1

g (xt − φ1xt−1 − · · · − φpxt−p)
}

× hV (φ+(B)xn−s+1, . . . , φ
+(B)xn)|det(Tn)|

where

Ũ` =
{
U` if ` ≤ s
x` − θr+1x`−1 − · · · − θpx`−s if ` > s.

If s > 0, ln |det(Tn)| ∼ ln |θp|n−p. Let us compute the conditional density of
xn, xn−1, . . . , xn−p given xn−d, xn−1−d, . . . , x1, Us, . . . , U1. The one-step (d = 1)
conditional density is given by

g(xn − φ1xn−1 − · · · − φpxn−p)
hV (φ+(B)xn−s+1,··· ,φ+(B)xn)
hV (φ+(B)xn−s, . . . , φ+(B)xn−1)

|det(Tn)|
| det(Tn−1)| ,

whereas if 1 < d ≤ p+ 1, one obtains{
d−1∏
u=0

g(xn−u − φ1xn−1−u − · · · − φpxn−u−p)
}

× hV (φ+(B)xn−s+1, . . . , φ
+(B)xn)

hV (φ+(B)xn−d−s+1, . . . , φ+(B)xn−d)
det(Tn)

det(Tn−d)
.

If d > p+ 1 the conditional probability density is

∫
· · ·
∫ { n∏

t=n−d+1

g(xt − φ1xt−1 − · · · − φpxt−p)
}
dxn−d+1 · · · dxn−p−1

× hV (φ+(B)xn−s+1, . . . , φ
+(B)xn)

hV (φ+(B)xn−d−s+1, . . . , φ+(B)xn−d)
det(Tn)

det(Tn−d)
.
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Notice that in all these cases the conditional probability density depends on
xn−d, xn−d−1, · · · , x1, Us, · · · , U1 only through xn−d, . . . , xn−d−p+1. However, this
implies that the conditional probability density of xn, xn−1, . . . , xn−p given xn−d, xn−1−d, . . . , x1

is the same by a standard argument using conditional expectations. The argument
is that if f is integrable, B and A are σ-algebras, then if E(f | B,A) = h is B
measurable, it follows that E(f | B) = E(E(f | B,A) | B) = E(h | B) = h. Thus
{Xn} is a sequence that is pth order Markovian.

3. A functional equation for the characteristic function. The characteristic
function of xk is clearly

η(t) =
∞∏

k=−∞
ϕ(ψkt).

The joint characteristic function of the random variables x−s, x−s+1, . . . , x0 is

η(τs, τs−1, . . . , τ0) = E

{
exp

[
i
s∑
`=0

τ`x−`

]}
=

∞∏
k=−∞

ϕ

(
s∑
`=0

τ`ψk−`

)
,

whereas the joint characteristic function of x−s, x−s+1, . . . , x−1 is

η̃(τs, τs−1, . . . , τ1) =
∞∏

k=−∞
ϕ

(
s∑
`=1

τ`ψk−`

)
.

It is clear that

∂

∂τ0
η(τs, . . . , τ1, τ0)|τ0=0 = ητ0(τ2, . . . , τ1, 0)

=
∫
ix0 exp

(
i
s∑
`=1

τ`x−`

)
dF (x−s, . . . , x−1, x0)

= i

∫
E(x0 | x−1, . . . , x−s) exp

(
i
s∑
`=1

τ`x−`

)
dF (x−s, . . . , x−1),

where F (x−s, . . . , x−1) is the joint distribution function of x−s, . . . , x−1. In the
case of the pth order autoregressive sequence xt, since the sequence is a Markov
process of order p, it is sufficient in considering the best one-step predictor (in mean
square) to consider s = p, since the one-step predictor of x0 given the whole past
will depend only on the p immediately preceding random variables. Now

∂

∂τ0
log η(τp, . . . , τ1, τ0)|τ0=0 =

ητ0(τp, . . . , τ1, 0)
η̃(τp, . . . , τ1)

=
∞∑

k=−∞
ψkϕ

′
(

p∑
`=1

τ`ψk−`

)/
ϕ

(
p∑
`=1

τ`ψk−`

)

while

∂

∂τj
log η̃(τp, . . . , τ1) =

∞∑
k=−∞

ψk−jϕ
′
(

p∑
`=1

τ`ψk−`

)/
ϕ

(
p∑
`=1

τ`ψk−`

)
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for some neighborhood of the origin |τp|, . . . , |τ1| ≤ ε, ε > 0. If the best predictor is
linear we must have

(3.1) ητ0(τp, . . . , τ1, 0) =
p∑
j=1

bj η̃τj (τp, . . . , , τ1),

where the bj ’s are the coefficients of the best linear predictor of x0 in mean square

x∗0 =
p∑
j=1

bjx−j .

This is in turn equivalent to

(3.2)
∞∑

k=−∞

(
ψk −

p∑
`=1

b`ψk−`

)
h

 p∑
j=1

τjψk−j

 = 0

where h(τ) = ϕ′(τ)
/
ϕ(τ) for (τ1, . . . , τp) such that η̃(τp, . . . , τ1) 6= 0. That (3.1) is

equivalent to (3.2) follows from the fact that∣∣ητj (τp, . . . , τ0)
∣∣ ≤ {E (x2

j

)}1/2

and that the ψk tend to zero exponentially as |k| → ∞. The equation (3.2) is
similar to the type of functional equation taken up in [3].

The ψk are the coefficients in the Laurent expansion of φ(z)−1. The b` can be
read off from the polynomial with constant coefficient positive, having the same
absolute value as φ(z) when z = e−iλ and with all its zeros outside the unit disc.
Let

φ∗∗(z) = (−1)szsφ∗
(

1
z

)
.

Notice that the roots of φ∗∗(z) are the inverses of the roots of φ∗(z). Thus the
polynomial

ζ(z) = φ+(z)φ∗∗(z)

has all its roots outside the unit disc and has the same absolute value as φ(z).
Notice that the coefficients ψk −

∑p
`=1 b`ψk−` are those in the Laurent expansion

of
ζ(z)φ(z)−1 = φ∗∗(z)φ∗(z)−1.

If the sequence is minimum phase this function is 1 and so the coefficients are 0 for
k 6= 0 and 1 when k = 0. Further, in the minimum phase case, ψk = 0 for k < 0.
The relation (3.2) is automatically satisfied in the minimum phase case whatever
the distribution G (as long as Eξt = 0 and Eξ2

t < ∞). However, we had already
seen this before using another argument.

Proposition 1. Consider the stationary solution xt of the system of equations
(1.1), where the ξt are independent, identically distributed with Eξt ≡ 0, Eξt =
σ2 < ∞ and characteristic polynomial φ(·) [clearly φ(z) 6= 0 if |z| = 1]. Then the
best one-step predictor for xt is linear if and only if (3.2) holds where the ψk’s are
given by (2.1) and the b`’s the coefficients of the best linear predictor.

It is of some interest to essentially characterize the sequence

γk = ψk −
p∑
`=1

b`ψk−`, k = . . . ,−1, 0, 1, . . .
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The generating function of the ψk is φ(z)−1 [see(2.1)]. Since the coefficients b`
correspond to best linear one-step predictor in mean square

1−
p∑
`=1

b`z
` = cφ(z)

p∏
i=r+1

{
(1−miz)m−1

i

(1−m−1
i z)

}
with c a nonzero constant. It then follows that

(3.3) γ(z) =
∞∑

k=−∞
γkz

k = c

p∏
i=r+1

{
(1−miz)m−1

i

(1−m−1
i z)

}
.

Since

m−1(1− zm)(1−m−1z)−1 = m+ (m2 − 1)
∞∑
j=1

mj−1z−j

when |m| < 1, if follows that

γk = 0 for k > 0.

Theorem 1. Consider the stationary autoregressive sequence {xt} satisfying (1.1)
and assume that the random variables ξt have all moments finite. Further let the
sequence be nonminimum phase with all the zeros mi, i = r+ 1, . . . , p simple. Then
if the best one-step predictor is linear, the ξ distribution is Gaussian.

Suppose that the ξ distribution is nonGaussian. There are then an infinite
number of nonzero cumulants µa 6= 0, a > 2, of the ξ distribution. Also

ψ−k =
p∑

j=r+1

αjm
k
j , k > 0

for some coefficients αj 6= 0, j = r + 1, . . . , p. If µa+1 6= 0 for some a ≥ 2, the
relation (3.2) implies that

(3.4)
∞∑
k=0

γ−kψ−k−`1 · · ·ψ−k−`a = 0, `1, . . . , `a = 1, . . . , p.

For the ath order partial derivative of the expression in (3.2) with respect to
τ`1 , . . . , τ`a at τ`1 = · · · = τ`a = 0, ia+1µa+1a! multiplied by the expression on
the left of (3.4). The equations (3.4) can be rewritten

p∑
j1,...,ja=r+1

αj1 · · ·αjam`1
j1
· · ·m`a

ja

∞∑
k=0

γ−k(mj1 . . .mja)k = 0,

`1, . . . , `a = 1, . . . , p. Consider the set of equations obtained by letting `1, . . . , `a =
1, . . . , s. The matrix of this set of equations is

M = (Mj,`) =
{
αj1 · · ·αjam`1

j1
· · ·m`a

ja

}
,

j = (j1, . . . , ja), ` = (`1, , . . . , `a), j1, . . . , ja = r+ 1, . . . , p, `1, . . . , `a = 1, . . . , s. The
determinant of this matrix is

(∏p
u=r+1 αu

)a times the ath power of the Vander-
monde determinant ∣∣m`

j ; j = r + 1, . . . , p, ` = 1, . . . , s
∣∣ .
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Since the determinant is nonzero we must have

γ
(
(mj1 . . .mja)−1

)
=
∞∑
k=0

γ−k(mj1 . . .mja)k = 0,

j1, . . . , ja = r+ 1, . . . , p. These are too many zeros for the function γ(z) and so we
must have µa+1 = 0. Since this holds for any a ≥ 2, the ξ distribution must be
Gaussian

NonGaussian nonminimum phase autoregressive sequences arise naturally when
considering transects of certain classes of random fields.
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