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SPECTRAL ANALYSIS FOR HARMONIZABLE PROCESSES

BY KEH-SHIN LII AND MURRAY ROSENBLATT
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Spectral estimation of nonstationary but harmonizable processes is
considered. Given a single realization of the process, periodogram-like and
consistent estimators are proposed for spectral mass estimation when the
spectral support of the process consists of lines. Such a process can arise in
signals of a moving source from array data or multipath signals with Doppler
stretch from a single receiver. Such processes also include periodically
correlated (or cyclostationary) and almost periodically correlated processes
as special cases. We give detailed analysis on aliasing, bias and covariances
of various estimators. It is shown that dividing a single long realization of the
process into nonoverlapping subsections and then averaging periodogram-
like estimates formed from each subsection will not yield meaningful results
if one is estimating spectral mass with support on lines with slope not
equal to 1. If the slope of a spectral support line is irrational, then spectral
masses do not fold on top of each other in estimation even if the data are
equally spaced. Simulation examples are given to illustrate various theoretical
results.

1. Introduction. Spectral analysis of stationary processes has a long history
with interest in both theory and applications. Wide-ranging applications in various
practical problems in engineering, economics, science and medicine are well
documented [see Yaglom (1987)]. These developments have been closely coupled
with the stationarity assumption. In recent years there has been growing interest
in the spectral analysis of various specific models of nonstationarity. A class of
models of this type that have generated considerable interest are the periodically
correlated (or cyclostationary, periodically stationary) or almost periodically
correlated processes [Alekseev (1988), Hurd (1989), Gardner (1991), Gerr and
Allen (1994a, 1994b), Dandawate and Giannakis (1994) and Leskow and Weron
(1992)]. The stationary and almost periodically correlated processes are proper
subsets of the class of harmonizable processes. A harmonizable continuous-time-
parameter process X(t), EX(t) ≡ 0, can be represented as a Fourier–Stieltjes
integral [Loève (1963)]

X(t) =
∫ ∞
−∞

eitλ dZ(λ)(1.1)
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of a process Z(λ) and the covariance function

rt,τ = cov
(
X(t),X(τ )

)
=

∫∫ ∞
−∞

eitλ−iτµ cov
(
dZ(λ), dZ(µ)

)

=
∫∫ ∞

−∞
eitλ−iτµdH(λ,µ),

(1.2)

with the spectral function

H(λ,µ)= cov
(
Z(λ),Z(µ)

)
,∫ ∞

−∞

∫
|dH(u, v)|<∞(1.3)

of bounded variation. A readable discussion of the properties of harmonizable
processes with many references is given in Yaglom (1987).

In the case of stationary processes, one has a representation of the form (1.1)
with Z(λ) a process of orthogonal increments, E(dZ(λ)dZ(µ)) = δλ,µ dF (λ)

and F a bounded nondecreasing function. Major interest focuses on the estimation
of the spectral density f (λ) = F ′(λ) when F is differentiable. The concept of
harmonizability in the sense of Loève is a natural generalization that includes a
large class of nonstationary processes. The spectral mass may not concentrate on
the diagonal line λ=µ because the process Z(λ) in (1.1) may not have orthogonal
increments. A natural question concerns what one can estimate consistently about
the spectral function H(λ,µ) of a harmonizable process from a single realization
X(t), |t| ≤ T , as T → ∞.

If the assumption of stationarity is dropped, there are many different nonsta-
tionary models that can be considered [see Dahlhaus (1997) for some references
and examples]. The basic model treated here differs from that considered in recent
papers where nonstationary processes bounded in mean square are considered.
Much of the research in these papers [see Dahlhaus (1997), Mallat, Papanicolaou
and Zhang (1998) and Neumann and von Sachs (1997)] is based on the concept
of a locally stationary process, that is, one that can be approximated locally by
a stationary process. If a process has spectral mass with support on lines that
are not very close to the diagonal line λ = µ, then locally stationary processes
are not suitable to model such a process. The approximate methods are based
on the asymptotics suggested by the local approximation of the process. Here
there is no notion of such an approximation—the fixed given process is analyzed.
To be specific, consider a process X(t) with periodic covariance (period T > 0)
cov(X(t),X(τ )) = R(t, τ ) = cov(X(t + T ),X(τ + T )). All discrete time para-
meter processes of this type are harmonizable but they are not locally stationary if
they are periodic but not stationary.

It should be noted that there are continuous-time-parameter periodic processes
that are not harmonizable. Gladyshev (1963) gives the exampleR(t, τ )= g(t)g(τ )
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with g continuous periodic with period T but having Fourier coefficients that are
not absolutely summable. If the Fourier coefficients are absolutely summable, the
process with this covariance function is, of course, harmonizable. Let the number
τ be a translation number of the complex continuous function f belonging to
ε > 0 if sup−∞<x<∞ |f (x + τ )− f (x)| ≤ ε. If for any ε > 0 there is an l(ε) > 0
such that any interval of length l(ε) contains a translation number of f belonging
to ε, then f is almost periodic in the sense of Bohr (f ∈ B) [Bohr (1951)].
Any finite trigonometric polynomial

∑m
n=1 αn exp(iλnx) with the λ’s real is in B .

Furthermore, B is an algebra closed under uniform convergence. A process X(t)
is said to have an almost periodic covariance function B(t, τ ) if B(t + s, τ + s)

is almost periodic as a function of s for each t, τ . Most processes with almost
periodic covariance functions that are not stationary are harmonizable but not
locally stationary. The class of processes we consider is qualitatively broader
than the processes with almost periodic covariance function and the nonstationary
subclass is not locally stationary in general.

In this paper we consider the estimation of spectra of harmonizable processes
with spectral mass concentrated on lines on the basis of a time-ordered sequence
of observations. Estimation of spectra on lines with slopes not parallel to the
diagonal has been of certain interest in signal processing [see Allen and Hobbs
(1992)]. Some preliminary results were announced in Lii and Rosenblatt (1998).
Further remarks on where such problems arise are given after (2.7), where specific
models are discussed. In Section 2 we lay out some basic properties relevant to the
estimation problem and motivate the consideration of harmonizable processes with
spectral mass concentrated on lines. In Section 3 a periodogram-like estimator is
proposed and its bias is examined. The covariance properties of this estimator are
given in Section 4. A consistent estimator is considered in Section 5. Remarks are
made about the multivariate case. Section 6 has simulated examples and remarks
on estimation and computation. Section 7 has most of the proofs. We note that,
while the basic form of the estimator is a smoothing of a periodogram-like form,
the analysis is quite different from that of the usual periodogram-based estimators.
It is shown that averaging periodograms of nonoverlapping subsections of a long
section of data will not produce a meaningful result when the slope of the line of
the spectral support is not 1 in contrast to what happens in the case of stationary
or almost periodically correlated processes. Results obtained include periodically
correlated or almost periodically correlated processes as special cases for which
much more detailed analysis and results are presented here than in the existing
literature. In particular, the effects of aliasing are given. Extensive applications of
these processes are well documented in Gardner (1994).

2. Preliminaries. Consider a zero-mean harmonizable process with the
representation (1.1). If the process is real, then rt,τ = rτ,t and is real. This implies
that

dH(u, v)= dH(−v,−u).(2.1)
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This is symmetry with respect to u= −v. Also,

dH(u, v)= dH(−u,−v)= dH(v,u).

This is complex conjugate symmetry with respect to the point (0,0) and the
line u = v. From this we see that information of H(u,v) in the quadrant given
by {(u, v) | v ≥ |u|} determines H(u,v) everywhere. If the process Xt ≡ X(t)

is stationary, the spectral mass is concentrated on the diagonal line dH(u, v) =
δv−u,0×dF (u). If the process Xt is periodically or almost periodically correlated,
then the spectral mass is concentrated on at most countably many lines which are
parallel to the diagonal [Gladyshev (1963) and Dehay and Hurd (1993)]

dH(u, v)= ∑
j

δu−v−wj ,0 dFj(u).(2.2)

In this paper we assume the continuous-time harmonizable process X(t) has all
its spectral mass concentrated on a finite number of lines of the form u= αv+w,
α > 0. We will discuss cases in which there is spectral mass on a set of two-
dimensional positive measure, on a curve which is not a straight line, as well as
when α ≤ 0. We are interested in estimation of the spectral density fα,w(µ) on a
line λ= αµ+w:

dH(λ,µ)|λ=αµ+w = δλ−αµ−w,0 dFα,w(µ)= δλ−αµ−w,0fα,w(µ)dµ.(2.3)

The special case with α = 1 was considered in Hurd (1989) and Dandawate and
Giannakis (1994). Because of the symmetries in the case of a real-valued process,
if u= av+b is a line of spectral support, then so are u= a−1v−a−1b, u= av−b

and u= a−1v + a−1b with

fa,b(v)= af̄a−1,−a−1b(av + b)= f̄a,−b(−v)= afa−1,a−1b(−av − b).

Sampling at the integers n,m, we have

X(n)≡Xn =
∫ ∞
−∞

einλ dZ(λ)=
∫ π

−π
einλ

∞∑
k=−∞

dZ(λ+ 2πk),

with

rn,m ≡ cov(Xn,Xm)= EXnX̄m =
∫∫ π

−π
einλ−imµ dH̃(λ,µ)

and

dH̃(λ,µ)= ∑
k,j

dH(λ+ 2πk,µ+ 2πj).(2.4)

From this it is seen that an aliasing problem (in the sense of spectral mass folding
onto [−π,π ]2) occurs if the harmonizable process is broadband.

It is well known that one generally does not have consistent estimates of
spectral mass for a harmonizable process when H̃ is absolutely continuous with a
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spectral density h̃, dH̃ (λ,µ) = h̃(λ,µ)dλdµ with h̃(λ,µ) �= 0 on a set of two-
dimensional Lebesgue measure, if the sample is X−n, . . . ,Xn, letting n → ∞.
The simplest example is given by X0 ∼ N(0,1) with Xk = 0 for k �= 0, where
dH(λ,µ) = C dλdµ for some constant C. The most one could possibly hope
for is to estimate spectral mass whose support has two-dimensional Lebesgue
measure 0. The simplest such support is a finite collection of curves and, in
particular, lines. This motivates the consideration of estimation of spectral mass
concentrated on lines given a single realization.

A simple example of a harmonizable process with spectral mass on lines is given
by

Xt = Yt +
k∑

s=1

βsYαst ,(2.5)

with Yt stationary and βs and αs real and positive numbers, respectively. In such
case the spectral support lines are λ = µ, λ = αsµ, λ = α−1

s µ and λ = αsα
−1
s′ µ

for all s, s′ = 1, . . . , k. In Section 6 we give a slightly more complicated example
where it is shown that the spectral support lines have the given form.

A small variant of this model is given byXt = ∑k
s=1 βsYαs(t−τs ). Such processes

can be encountered in contexts when signals are of a multipath character and
contain time delays τs and Doppler stretches αs due to different propagation
speed along different paths for a single receiver. For a multiple-receiver example,
consider an acoustic signal that emanates from a moving point source and
propagates through an acoustic medium, before being received at two spatially
separated sensors. If, for instance, the source is in motion while the sensors are
stationary, then the actual waveform observed at the two sensor locations can be
modeled by [Ferguson (1999), page 261].

x1(t)= s(β1t)+ v1(t),

x2(t)= σs
(
β2(t − d)

) + v2(t),

where v1(t) and v2(t) represent additive noise observed in the absence of signal,
d is the time delay, σ is the relative attenuation and β1, β2 are the respective
receiver time scales that are introduced to account for the differential Doppler
effect. In the present case, the relative motion between the source and the sensors
results in the radial velocity component of the source at any given time being
different for each receiver. An example of aircraft transits overhead illustrating
this model is given in Ferguson (1999), page 261. Alternatively, the received
waveforms can be modeled by

x(t) = s(t)+ nx(t),

y(t) = σ1s
(
β(t − τ )

) + ny(t),

where β = β1/β2 [Ferguson (1999), (16)]. It is also demonstrated in Ferguson
that if the Doppler effect is ignored then the estimated delay will not be correct.
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Equation (16) of Ferguson (1999) is a version of a special case of the model we
dealt with (see the remarks at the end of Section 5 on multivariate harmonizable
processes). Additional examples can be found in Jin, Wong and Luo (1995),
page 904, for a wideband communication example and in Munk, Worcester and
Wunsch (1995), page 204, for one in ocean acoustic tomography. A related
example can be found in Chiu (1986) for seismic applications.

Throughout the paper we shall assume that X(t) is a continuous-time-parameter
harmonizable process with:

ASSUMPTION 1. All spectral support is on a finite number of lines given by
L = {(ai, bi)|u= aiv + bi, i = 1, . . . ,K} with positive slopes ai > 0.

ASSUMPTION 2. The spectral mass on the line u = av + b is given by
a continuously differentiable spectral density fa,b(v), (a, b) ∈ L. The spectral
densities fa,b(v) and their first derivatives are continuous and bounded in absolute
value by a function g(v) that is a monotonic decreasing function of |v| that
decreases to 0 as |v| → ∞ and that is integrable as a function of v.

The following simple remark indicates how a harmonizable process with line
spectra may differ from a stationary or almost periodically correlated process in
terms of aliasing. The aliasing then can have a more complicated character. We say
that a line u= av+ b is a line of spectral support if the spectral density fa,b(v) on
the line is nonzero on a set of positive one-dimensional Lebesgue measure.

PROPOSITION 2.1. Let X(t) be a continuous-time-parameter process con-
tinuous in mean square satisfying Assumptions 1 and 2. The discretely observed
process Xn then has a countably infinite number of lines of support in (−π,π ]2 if
and only if one of the lines of spectral support of X(t) has irrational slope a and
its spectral density is nonzero at an infinite number of points vj , with |vj | → ∞.
Furthermore, if there is a line of spectral support with irrational slope with spec-
tral density nonzero at all v, |v| > s for some s > 0, then the discretely observed
process has a countably dense set of lines of support in (−π,π ]2.

Before we prove the proposition, we set the following convention which will
be followed in the paper. When we refer to w = zmod 2π , it is understood that
−π < w ≤ π . Let {u} be the integer l such that −1/2 < u− l ≤ 1/2. Our version
of zmod 2π is then (zmod 2π)= z− {z/(2π)}2π .

PROOF OF PROPOSITION 2.1. The proposition follows from the following
simple remarks. Let u = av + b be a line with nonzero spectral density for the
continuous-time process. The aliased line segments of this line, in the discretely
sampled case, in (−π,π ]2 all have slope a. Let us look at the intersections of these
line segments with v = v0 ∈ (−kπ, kπ ], −π < u ≤ π , for integer k. The points
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(a(v0 +2πn)+b, v0 +2πn), n integer, on u= av+b are mapped onto the points
((2πna+ av0 + b)mod2π,v0) of v = v0,−π < u≤ π . If a is rational there are at
most a finite number of values (2πna+ av0 + b)mod 2π for n integer. Notice that
if a = 1 there are at most two such aliased line segments. If a is irrational there are
an infinite number of values (2πna + av0 + b)mod2π for n integer and they are
dense on (−kπ, kπ ]. Since v0 is an arbitrary point in (−kπ, kπ ], the aliased line
segments in (−π,π ]2 are dense. Now the proposition follows using Assumptions 1
and 2. �

We note that the previous argument also implies that spectral mass with its
support on a line with irrational slope never folds back on its own aliased line
segments. Equally spaced sampling of a continuous-time process does produce
aliasing. In the stationary case the “Nyquist” frequency is the frequency such
that spectral mass beyond that frequency folds back on spectral mass of a lower
frequency. In the harmonizable case aliasing does not produce a Nyquist frequency
in the conventional sense for a spectral density whose spectral line support has
irrational slope. Spectral masses of two different frequencies do not overlap due to
aliasing in the case of a spectral density with support line having irrational slope. In
this sense there is no overlap “aliasing problem” for spectral density estimation if
the support line has irrational slope. The effect of aliasing on estimation in almost
periodically correlated processes has not appeared in the literature and is given as
a special case of our analysis in Sections 3–5.

3. A periodogram and its bias. In the classical case of a stationary process,
an estimate proposed by Daniell (1946) was obtained by dividing a sequence
of observations X0, . . . ,XN−1 into m disjoint sections of length n, N =
mn, computing a periodogram for each section and averaging the resulting
periodograms. On letting m,n→ ∞ as N → ∞, a consistent estimate is obtained
under appropriate conditions. If a harmonizable process has mass on a line of slope
a �= 1, one object of our discussion is to show that a Daniell-like estimate cannot
be used to estimate the spectral mass on that line.

To show the effect relative to a Daniell-like estimate in sampling from the
continuous-time harmonizable process X(t), −∞ < t < ∞, let us consider
observations Xt+lJ with t = 0, . . . , n − 1 with J,n ≥ 0 integers and l an index
value. Let

Fl,n(λ)=
n−1∑
t=0

Xt+lJ e−i(t+lJ )λ,(3.1)

with corresponding periodogram

Il,n(λ,µ)= 1

2πn
Fl,n(λ)Fl,n(µ).(3.2)

Notice that, for J = n, Fl,n(λ) uses nonoverlapping subsections of X(t) for
different integers l. When J < n, we have overlapping sections [Zurbenko (1986),
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page 214]. Given a sample X0, . . . ,XN−1, N = mn, a Daniell-like estimate is,
when J = n, the average of periodograms of nonoverlapping subsections of the
data,

Dm,n(λ,µ)= 1

m

m−1∑
l=0

Il,n(λ,µ).(3.3)

Another concern is to show the effect of aliasing that is the consequence
of discretely sampling a continuous-time-parameter process. In the case of a
stationary process, one tries to correct the aliasing by either narrowband filtering
or discretely sampling more frequently. Similar methods can be used for the
processes we deal with, but it should be noted that the effects of aliasing are more
complicated than they are for a stationary process.

Given (λ,µ) ∈ (−π,π ]2, let (α,w) be a fixed pair with α > 0 such that
λ= αµ+w. Then set

y ≡ y(k;a, b;λ,µ)
≡ ((

2πka + (a − α)µ+ b−w
)

mod 2π
)

(3.4)

= (
(2πka + aµ+ b− λ)mod 2π

)
for (a, b) ∈ L with k an integer. The meaning of some aspects of y will be
remarked on later. One can then obtain the following theorem.

THEOREM 3.1. Assume Assumptions 1 and 2 hold. Then

EIl,n(λ,µ)= ∑
(a,b)∈L

∑
|y(k;a,b;λ,µ)|≤ν

eilJy(k;a,b;λ,µ)

× fa,b(µ+ 2πk)G
(
n, l, J, y(k;a, b;λ,µ))(3.5)

+O

(
logn

n

)
uniformly in (λ,µ) with a fixed ν ∈ (0, π ] and

G=G
(
n, l, J, y(k;a, b;λ,µ))

= 1

a

∫ ∞
−∞

1[0,a](t)1[−lJ (a−1)/n,1−lJ (a−1)/n](t)einyt/a dt

=




1

iny

[
exp

(
iny

a

[
min

(
a,1 − lJ (a − 1)

n

)])

− exp
(

iny

a
max

(
0,− lJ (a − 1)

n

))]
,

if (0, a)∩
(
− lJ (a − 1)

n
,1 − lJ (a − 1)

n

)
�= ∅,

0, otherwise,

(3.6)

where ∅ is the empty set.
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We note that for an error term like that in (3.5) we need ν fixed and cannot let
ν ↓ 0.

The theorem gives a detailed estimate for the expectation of this type of
periodogram. It is worthwhile making a few remarks about the theorem. First,
notice that if (a, b) ∈ L and y(k;a, b;λ,µ) �= 0 for a fixed k the contribution to
the expectation from that term in the double sum on the right-hand side of (3.5)
[see (3.6)] is O(1/n). For an (a, b) ∈ L, the condition

y = ((
2πka − λ+ (aµ+ b)

)
mod 2π

) = 0

for some integer k means that the line of spectral support u= av+ b or an aliased
version of it passes through the point (λ,µ). From (3.4) we also see that y = 0
implies 2πka + aµ+ b − (αµ+w) = 0 mod2π . Notice that if (α,w) ∈ L with
(a, b)= (α,w) and k = 0 then y = 0 is satisfied. This means that if (λ,µ) is a point
on a spectral support line then there is a contribution to (3.5) in the summation. If
(α,w) /∈ L then y = 0 in (3.4) implies there exists (a, b) ∈ L such that at least one
of its aliased lines (i.e., at least one k) passes through the point (λ,µ). So for a
given point (λ,µ) if it is not on any spectral support lines or their aliased versions
then EIl,n(λ,µ)=O(logn/n)+G(M), where

G(M)= ∑
(a,b)∈L

∑
|y|≤ν and |k|>M

eilJyfa,b(µ+ 2πk)G(n, l, J, y)

for any fixed integer M from (3.4) and (3.5). However, |G(M)| → 0 as M → ∞
by Assumptions 1 and 2. The rate at which G(M) → 0 depends on the rate of
g(v)→ 0 in Assumption 2. As a result we have:

COROLLARY 3.1. Under Assumptions 1 and 2, if (λ,µ) ∈ [−π,π ]2 is not
on any lines given by (a, b) ∈ L or their aliased lines, then EIl,n(λ,µ) → 0 as
n→ ∞.

For the term with a = 1, we have

G= 1

iny
[einy − 1].

Then, if y �= 0, y = ((aµ + b − λ)mod 2π) is fixed and independent of k and
G= O(1/n) whatever the values of l and J . If a �= 1, then G→ 0 if lJ/n → ∞
as n→ ∞. Also, if y(k;a, b;λ,µ)= 0, then, for a > 0,

G= 1

a

∥∥[0, a] ∩ [−lJ (a − 1)/n, 1 − lJ (a − 1)/n]∥∥,(3.7)

with ‖ · ‖ denoting length. Notice that, if y = 0, then G �= 0 if and only if either

a ≤ 1 and − 1

1 − a
<
lJ

n
<

a

1 − a
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or

a ≥ 1 and − a

a − 1
<
lJ

n
<

1

a − 1
.

To guarantee that G �= 0 for arbitrary a > 0, we need −1 ≤ lJ/n≤ 0. Also notice
that, from (3.7),

G= 1

a
min(a,1)

if (i) a = 1 or l = 0 for any J or (ii) l ∈ [−1,0] and J = n. This suggests that,
for J = n and y = 0, any l ∈ [−1,0] can be used in (3.1) and in these cases
G terms in (3.5) have a simple form. However, for computational purposes, the
following three forms of a finite Fourier transform, which correspond to the cases
when J = n and l = 0, −1 and −1

2 , respectively, in (3.1), can be conveniently
used, for any a > 0,

(a) Fn(λ)=
n∑
t=0

Xte
−itλ,

(b) Fn(λ)=
0∑

t=−n
Xte

−itλ,(3.8)

(c) Fn(λ)=
n/2∑

t=−n/2

Xte
itλ,

with a corresponding periodogram

In(λ,µ)= 1

2π(n+ 1)
Fn(λ)Fn(µ).(3.9)

We will use the form (c) given by (3.8) later and in such cases we take n to be
even.

COROLLARY 3.2. Assume Assumptions 1 and 2 hold and J = n with l ∈
[−1,0]. Then, as n→ ∞,

EIl,n(λ,µ)→ ∑
(a,b)∈L

∑
y(k;a,b;λ,µ)=0

fa,b(µ+ 2πk)
1

a
min(a,1).(3.10)

Notice that if there is no aliasing the right-hand side of (3.10) becomes

∑
(a,b)∈L

∑
y(k;a,b;λ,µ)=0

fa,b(µ)
1

a
min(a,1).



268 K.-S. LII AND M. ROSENBLATT

Since we assume only a finite number of lines of spectral support, there are at most
a finite number of points of intersection of these lines. Aside from these points, the
mean value tends to

fα,w(µ)
1

α
min(α,1)

if λ = αµ + w is a line of spectral support. In the case of a Daniell-like
estimate (3.3) (note J = n), where l takes on integer index values, if a �= 1 then,
except for a fixed number of terms, |l(a − 1)| > 1 and so the corresponding G

[see (3.7)] value is 0. Alternatively, we saw earlier that, to guarantee G �= 0 for
arbitrary a > 0, we needed l ∈ [−1,0] when J = n. Consequently, the mean of
the Daniell estimate (3.3) which averages over periodograms of nonoverlapping
subsections of the data will generally not tend to fα,w(·) as m,n→ ∞ even when
α < 1.

If a process is almost periodically correlated, the spectral mass is located
on lines of slope 1 and y(k; 1, b;µ + w,µ) = (b − w)mod2π . The following
corollary holds.

COROLLARY 3.3. If the process is almost periodically correlated, under
Assumptions 1 and 2 one has

EIl,n(λ,µ)= ∑
(1,b)∈L

∑
|y(k;1,b;µ+w,µ)|≤ν

eilJy(k;1,b;µ+w,µ)

× f1,b(µ+ 2πk)
1

iny

[
einy − 1

]
(3.11)

+O

(
logn

n

)
.

As n→ ∞, the expected value tends to∑
(1,b)∈L

∑
y(k;1,b;µ+w,µ)=0

f1,b(µ+ 2πk).(3.12)

Notice that y(k; 1, b;µ+w,µ)= (b−w)mod 2π from (3.4).
From the previous discussions we see that the expectations of the periodogram

from an equally spaced discrete sample [see (3.1)] asymptotically converge to
the “aliased” version of the spectral density function on the support lines. This
is analogous to the stationary case where the expectation of the periodogram
converges asymptotically to the aliased version of the spectral density function.
The difference is that the aliasing is more complicated for the harmonizable
processes than for the stationary processes. Bias and consistency properties of
an estimator based on discrete samples are properties relative to these aliased
spectral densities. We also note here that when the spectral support line has slope
a < 0, previous and subsequent discussions and results still hold if we use the
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symmetrized version (c) in (3.8) with very minor modifications in the derivations.
We have degenerate cases when the slope of the spectral support line is a = 0
which is symmetric to the line with slope a−1 = ∞. It is also plausible, based
on the discussions in this section, that if the spectral mass is concentrated on a
smooth curve, similar results on the expectations and covariances should hold.
These details are not pursued here.

4. Periodogram covariance. Our objective is to now give the asymptotic
behavior of the covariance of the periodogram. Given fixed (λ,µ), (λ′,µ′), assume
that the fixed pair (α,w), (α′,w′) with α > 0, α′ > 0 is such that λ= αµ+w and
λ′ = α′µ′ + w′. Let (a, b), (a′, b′) ∈ L. To state the result in a convenient form,
the following expressions are introduced:

y(1)= (
y(k;a, b;λ,λ′)

) = (
(2πka + aλ′ + b− λ)mod 2π

)
,(4.1)

y(2)= (
y(k′;a′, b′;−µ,−µ′)

) = (
(2πk′a′ − a′µ′ +µ+ b′)mod 2π

)
,(4.2)

y(3)= (
y(k;a, b;λ,−µ′)

) = (
(2πka − aµ′ + b− λ)mod2π

)
,(4.3)

y(4)= (
y(k′;a′, b′;−µ,λ′)

) = (
(2πk′a′ + a′λ′ +µ+ b′)mod 2π

)
.(4.4)

This additional notation is introduced so that formulas later on do not become too
cluttered. Notice that in (4.1)–(4.4) two lines λ = αµ + w,λ′ = α′µ′ + w′ are
dealt with. The notation in this case is introduced to take care of the covariance
computation. In formula (3.4) the bias of a point on a single line was involved.

The covariance properties of the periodogram are given in the following
theorem.

THEOREM 4.1. Let X(t) be a normal harmonizable process satisfying
Assumptions 1 and 2. Then

cov
(
Il,n(λ,µ), Il,n(λ

′,µ′)
)

=
[ ∑
(a,b)∈L

∑
|y(1)|≤ν

fa,b(λ
′ +2kπ)eilJy(1)G

(
n, l, J, y(1)

)+O

(
logn

n

)]

×
[ ∑
(a′,b′)∈L

∑
|y(2)|≤ν

fa′,b′(−µ′ +2k′π)eilJ (2)G
(
n, l, J, y(2)

)+O

(
logn

n

)]
(4.5)

+
[ ∑
(a,b)∈L

∑
|y(3)|≤ν

fa,b(−µ′ +2πk)eilJy(3)G
(
n, l, J, y(3)

)+O

(
logn

n

)]

×
[ ∑
(a′,b′)∈L

∑
|y(4)|≤ν

fa′,b′(λ′ +2πk′)eilJy(4)G
(
n, l, J, y(4)

)+O

(
logn

n

)]
,

with −π < λ,λ′,µ,µ′ ≤ π , ν given in Theorem 3.1 and G(·) as given in (3.6).
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Theorem 4.1 will be useful in deriving the covariance properties of locally
smoothed estimates of the spectral density on lines of spectral support.

COROLLARY 4.1. The result of Theorem 4.1 holds for non-Gaussian harmo-
nizable processes with finite fourth-order moments if the fourth-order cumulants
satisfy 1

n
supt

∑
τ,t ′,τ ′ |cum(Xt ,Xτ ,Xt ′ ,Xτ ′)| → 0 as n → ∞. This condition is

satisfied if supt
∑

τ,t ′,τ ′ |cum(Xt ,Xτ ,Xt ′,Xτ ′)|<∞.

5. Consistent estimates. The estimates that we consider are smoothed
versions of the periodogram and for that reason we introduce the following
additional assumption.

ASSUMPTION 3. Let K(η) be a continuous nonnegative symmetric weight
function of finite support with

∫
K(x)dx = 1. Also, Kn(η)= b−1

n K(b−1
n η), where

bn ↓ 0 and nbn → ∞ as n→ ∞.

The periodogram has the doubly periodic property

In(λ+ 2πk,µ+ 2πj)= In(λ,µ)(5.1)

for all λ,µ and all integers k, j . This suggests that

f̂α,w(η)=
∫ π+

−π+
In(αµ+w,µ)Kn(µ− η)dµ,(5.2)

where π+ = π + δ (δ > 0) is a plausible estimate of fα,w(η) with −π ≤ η, αη+
w ≤ π .

For convenience in exposition, form (c) of (3.8) of the finite Fourier transform
will be used in (3.9). Let us then note that we have, from (3.5) and (4.5),
Theorem 5.1.

THEOREM 5.1. Under Assumptions 1 and 2 and In(λ,µ) given by (3.9) and
(3.8)(c), using (3.4),

EIn(λ,µ)= ∑
(a,b)∈L

∑
|y|≤ν

fa,b(µ+ 2πk) sin
(
n+ 1

2a
ymin(a,1)

)/(
n+ 1

2
y

)

(5.3)

+O

(
logn

n

)
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uniformly in (λ,µ) with y given in (3.4) with the sum over k through the
expression y and

cov
(
In(αµ+w,µ), In(α

′µ′ +w′,µ′)
)

=
[ ∑
(a,b)∈L

∑
|y(1)|≤ν

fa,b(λ
′ + 2kπ) sinc

(
α,y(1)

) +O

(
logn

n

)]

×
[ ∑
(a′,b′)∈L

∑
|y(2)|≤ν

fa′,b′(−µ′ + 2k′π) sinc
(
α′, y(2)

) +O

(
logn

n

)]

+
[ ∑
(a,b)∈L

∑
|y(3)|≤ν

fa,b(−µ′ + 2πk) sinc
(
α,y(3)

) +O

(
logn

n

)]

×
[ ∑
(a′,b′)∈L

∑
|y(4)|≤ν

fa′,b′(λ′ + 2πk′) sinc
(
α′, y(4)

) +O

(
logn

n

)]

(5.4)

for −π < λ,λ′,µ,µ′ ≤ π , where y(1), . . . , y(4) are given in (4.1)–(4.4) and

sinc(a, y)= sin
(
n+ 1

2a
ymin(a,1)

)/(
n+ 1

2
y

)
(5.5)

= sinc
(
n+ 1

2
yl(a)

)
l(a),

with

l(a)= min(a,1)

a
, sinc(x)= sinx

x
.

Then, by (5.2), (5.3) and (5.5),

Ef̂α,w(η) = ∑
(a,b)∈L

∑
|y|≤ν

∫
fa,b(µ+ 2πk) sinc(a, y)Kn(µ− η)dµ

(5.6)
+O

(
logn

n

)
,

where y is given in (3.4). We then have the following result.

THEOREM 5.2. Under Assumptions 1–3 when bn ↓ 0, nbn → ∞ with ξ =
αη+w,

Ef̂α,w(η)= o(bn)+O

(
logn

nbn

)

if α is not a slope of a spectrum support line. However,

Ef̂α,w(η) = l(α)
∑

k,(α,b)∈L

fα,b(η+ 2πk)
sin(((n+ 1)/2)l(α)y′)
((n+ 1)/2)y′l(α)

(5.7)
+ o(bn)+O

(
logn

n

)

if α is a slope of a spectrum support line with y′ = ((2πkα + b−w)mod 2π).
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Equation (5.7) says, asymptotically, if (ξ, η) is not on a spectral support line or,
alternatively, if it is on a spectral support line but the smoothing in the estimate is
not on a spectral support line, then Ef̂α,w(η)→ 0. If (ξ, η) is on a spectral support
line and the smoothing is on the spectral support line given by (α,w) which passes
through (ξ, η) (there could be more than one support line passing through the same
point), then Ef̂α,w(η) converges to l(α) times the sum of all spectral masses on
spectral support lines which have the same slope α and which are aliased onto
(ξ, η) through the condition y′ = 0.

In the almost periodically correlated case, a simpler estimate leads to the
following proposition.

PROPOSITION 5.1. If the process X(t) is almost periodically correlated, then
under Assumptions 1–3, bn ↓ 0, nbn → ∞,

Ef̂1,w(η)= ∑
(1,b)∈L

∑
k

sin
(
(n+ 1)/2

)(
(b−w)mod2π)

)
(
(n+ 1)/2

)(
(b−w)mod 2π

)

×
∫
f1,b(µ+ 2πk)Kn(µ− η)dµ+O

(
logn

n

)
.

If the functions f1,b are continuously differentiable up to second order, then∫
f1,b(µ+ 2πk)Kn(µ− η)dµ

= f1,b(η+ 2πk)+ b2
n

2
f ′′

1,b(η+ 2πk)
∫
z2K(z) dz+ o(b2

n)

and

Ef̂1,w(η) = ∑
(1,b)∈L

∑
k

sinc
(
n+ 1

2

(
(b−w)mod 2π

))
f1,b(η+ 2πk)

+ b2
n

2

∫
z2K(z) dz

∑
(1,b)∈L

∑
k

sinc
(
n+ 1

2

(
(b−w)mod 2π

))

× f ′′
1,b(η+ 2πk)

+ o
(
b2
n

) +O

(
logn

n

)
.

We note that if ((b−w)mod2π) �= 0, then the first term on the right-hand side
of the last equation is O(1/n). If ((b−w)mod 2π)= 0, then the sinc function is 1.
We now consider the asymptotic behavior of the covariance of spectral estimates.



HARMONIZABLE SPECTRAL ANALYSIS 273

THEOREM 5.3. Let (α,w), (α′,w′) be fixed with α > 0, α′ > 0. Also, let
(a, b), (a′, b′) range over the finite set L. If −π ≤ ξ, ξ ′, η, η′ ≤ π with ξ =
αη+w, ξ ′ = α′η′ +w′, then

cov
(
f̂α,w(η), f̂α′,w′(η′)

)

= 2π

(n+ 1)bn

{ ∑
k,k′,a,a′
b,b′

[
δaα′−a′α,0δ(y(k;a,b;ξ,ξ ′)),0δ(y(k′;a′,b′;−η,−η′)),0

× fa,b(a
′η′ +w′ + 2πk)fa′,b′(−η′ + 2πk′)

×
∫
K(a′x)K(x) dxmin

(
α′ min(a,1)

min(a′,1)
,1

)
min(a′,1)

aα′
+ δa−a′α′α,0δ(y(k′;a′,b′;−η,ξ ′)),0δ(y(k;a,b;ξ,−η′)),0

(5.8)
× fa,b(−η′ + 2πk)fa′,b′(a′η′ +w′ + 2πk′)

×
∫
K(−a′α′x)K(x) dxmin

(
1

α′
min(a,1)

min(a′,1)
,1

)

× min(a′,1)

a′α

]}

+ o

(
1

nbn

)
+O

(
logn

n

)
+O

(
log2 n

n2b2
n

)

if n→ ∞, bn ↓ 0, nbn → ∞.

In Theorem 5.3 the covariance properties of the smoothed spectral estimates are
given. Thus Theorems 5.2 and 5.3 show that the smoothed spectral estimates give
consistent estimates of the spectral mass on the lines of concentration if there is no
aliasing. The possible effects of aliasing can be read off from Theorem 5.2. Also
consider formula (5.8) for the case of the variance when there is no aliasing. Then,
except for a finite number of points, the expression on the right-hand side is

2π

(n+ 1)bn
f1,0(η+w)f1,0(−η)

∫
K(x)2 dx,

the contribution from the diagonal a = 1, b = 0. The additional terms that can
arise at this finite number of points correspond to the doubling at 0, π in the case
of spectral estimates for a stationary process.

If the process is almost periodically correlated, all the spectral lines have
slope 1, a = a′ = α = α′ = 1. The following corollary is an immediate
consequence of the theorem.
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COROLLARY 5.1. If the process is almost periodically correlated, then, under
the conditions of Theorem 5.3,

cov
(
f̂1,w(η), f̂1,w′(η′)

)
= 2π

(n+ 1)bn

∑
k′,k
b,b′

[
δ((η′−η+w′−w+b)mod 2π), 0δ((η−η′+b′)mod2π), 0

× f1,b(η
′ +w′ + 2πk)f1,b′(−η′ + 2πk′)

∫
K(x)2 dx

+ δ((−η′+b−η−w)mod 2π),0δ((η′+w′+η+b′)mod2π),0

× f1,b(−η′ + 2πk)f1,b′(η′ +w′ + 2πk′)

×
∫
K(−x)K(x) dx

]

+ o

(
1

nbn

)
+O

(
logn

n

)
+O

(
log2 n

n2b2
n

)
.

Now we discuss briefly the estimation of the cross-spectrum of harmonizable
processes.

DEFINITION. Stochastic processes {X(j)(t)|j = 1, . . . , J } are jointly harmo-
nizable if, for l, j = 1, . . . , J ,

X
(j)
t ≡X(j)(t)=

∫
eitλ dZj (λ)

and

cov
(
X(l)(t),X(j)(τ )

) =
∫ ∫ ∞

−∞
eitλ−iτµ cov

(
dZl(λ), dZj(µ)

)

=
∫ ∫ ∞

−∞
eitλ−iτµdHl,j (λ,µ),

with ∫ ∫ ∞
−∞

|dHl,j (λ,µ)|dλdµ<∞.

If cross-spectral mass is concentrated on lines in the set

L = {
(a, b) | λ= aµ+ b

}
and spectral densities exist, then

dHi,j (λ,µ)= ∑
(a,b)∈L

δλ−aµ−b,0f (i,j )
a,b (µ)dµ.
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An obvious periodogram is

I
(i,j )
l,n (λ,µ)= 1

2πn
F
(i)
l,n (λ)F

(j)
l,n (µ),

with

F
(k)
l,n (λ)=

n−1∑
t=0

X
(k)
t+lJ e

−i(t+lJ )λ.

Under assumptions similar to Assumptions 1–3 analogs of the previous results
in the univariate case hold for the multivariate case.

6. Simulation examples. In this section we give an example of a harmoniz-
able process with spectral support on lines and carry out spectral density estima-
tion. Let

Yt =
∫
eitλ dZ(λ)(6.1)

be a stationary process with spectral density f (·) and spectral distribution F(·).
Let

Xt = Yt + cos(wt)Yαt ,(6.2)

with w,α ∈ (0,∞). This is the multipath problem of (2.5) with k = 1 where we
have made the example more complicated by including a “carrier” cos(wt) for the
Doppler stretched signal. Then

Xt =
∫
eitλ dZ(λ)+ 1

2

∫
(eiwt + e−iwt )eiαtλ dZ(λ)

=
∫
eitλ dZ(λ)+ 1

2

∫
eitλ

[
dZ

(
λ−w

α

)
+ dZ

(
λ+w

α

)]

=
∫
eitλ dZ1(λ),

with dZ1(λ)= dZ(λ)+ 1
2 dZ(

1
α
(λ−w))+ 1

2 dZ(
1
α
(λ+w)). Then the spectrum

of Xt is given by dH(λ,µ)≡ E dZ1(λ) dZ1(µ). Using the orthogonal increment
property of the Z(λ) process and the fact that E dZ(λ)dZ(λ)= f (λ) dλ, we have

E dZ(λ)dZ(µ)= f (µ)δλ,µ dµ,

E
1

2
dZ

(
1

α
(λ−w)

)
1

2
dZ

(
1

α
(µ−w)

)

= 1

4
E

{
lim
h→0

1

h

∣∣∣∣Z
(

1

α
(µ+ h−w)

)
−Z

(
1

α
(µ−w)

)∣∣∣∣
2

δλ,µ dµ

}
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= 1

4
lim
h→0

1

h

[
F

(
1

α
(µ−w)+ h

α

)
− F

(
1

α
(µ−w)

)]
δλ,µ dµ

= 1

4α
f

(
1

α
(µ−w)

)
δλ,µ dµ,

E
1

2
dZ

(
1

α
(λ−w)

)
dZ(µ)= 1

2
E dZ(µ)dZ(µ)δ(1/α)(λ−w),µ dµ

= 1

2
f (µ)δλ,αµ+w dµ,

E dZ(λ)
1

2
dZ

(
1

α
(µ−w)

)

= 1

2
E

∣∣∣∣dZ
(

1

α
(µ−w)

)∣∣∣∣
2

δλ,(1/α)(µ−w) dµ

= 1

2α
f

(
1

α
(µ−w)

)
δλ,(1/α)(µ−w) dµ,

with corresponding expressions for all other possible terms. Therefore

dH(λ,µ)=
[
f (µ)+ 1

4α
f

(
1

α
(µ−w)

)
+ 1

4α
f

(
1

α
(µ+w)

)]
δλ,µ dµ

+ 1

2
f (µ)δλ,αµ+w dµ+ 1

2
f (µ)δλ,αµ−w dµ

+ 1

2α
f

(
1

α
(µ−w)

)
δλ,(1/α)(µ−w) dµ

(6.3)

+ 1

2α
f

(
1

α
(µ+w)

)
δλ,(1/α)(µ+w) dµ

+ 1

4α
f

(
1

α
(µ−w)

)
δλ,µ−2w dµ

+ 1

4α
f

(
1

α
(µ+w)

)
δλ,µ+2w dµ.

The spectral mass of Xt is supported on the seven lines given by

λ=µ, λ= αµ+w, λ= αµ−w, λ= 1

α
(µ−w),

(6.4)

λ= 1

α
(µ+w), λ= µ− 2w and λ=µ+ 2w,

which we shall refer to as lines (1)–(7), respectively. These lines are shown in
Figure 1 for (α,w)= (0.5,0.5).
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FIG. 1. Spectral support lines for yt = xt + cos(ωt)xαt with (α,ω)= (0.5,0.5).

As an example, consider

Yt = εt + 0.5εt−1,(6.5)

with εt i.i.d. N(0,1).
Five thousand independent Yt with t = −128, . . . ,128 are generated. Shannon

interpolation is used to obtain Yαt , t = −128, . . . ,128, for α = 0.5. Using (6.2),
Xt, t = −128, . . . ,128, is obtained. Periodograms are formed from (3.9) on each
of the seven lines given by (6.4). Five thousand independent such periodograms
are averaged and for each line both real and imaginary parts of the corresponding
periodogram are plotted against the corresponding theoretical values given
by (6.3). These plots are shown in Figure 2 in order starting from term 1. Relative
to term 1, the sum of the three terms which gives the theoretical spectral mass on
the diagonal line [see line 1 from (6.3)] is plotted as a dashed curve. The averaged
periodogram of Xt is plotted with it as the solid line and we see that it is roughly
unbiased with some variability. The theoretical spectral mass and its estimate are
almost superimposed. The theoretical spectral mass is also plotted as the dashed
curve slightly below its estimate with an offset. The two spikes located at ±1 are
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FIG. 2. Averaged periodogram spectral estimates on different lines; (α,ω) = (0.5,0.5); sample
size, 257, each averaged 5000 times; —, estimated real part; · · · , estimated imaginary part; - - -,
theoretical real part; theoretical imaginary parts are all 0 for this example and are not plotted.
Theoretical real parts are almost superimposed on their estimates so they are also plotted with an
arbitrary offset.

due to the intersection of the diagonal line with two other spectral support lines.
Lines 2 and 4 intersect line 1 at +1 while lines 3 and 5 intersect line 1 at −1 (see
Figure 1). There are extra spectral masses contributing to the diagonal lines at these
intersection points. Similar remarks can be made for all other graphs where there
are spikes. These graphs are consistent with the properties of the periodogram
given by (3.10) or (5.4). Since the theoretical spectral functions are almost the
same as their estimates, we also plot a shift of the real part of the theoretical
spectral functions to better indicate their character. Terms 2, 4 and 6 correspond
to lines 2, 4 and 6 from (6.3). Terms 3, 5 and 7 are not plotted since they are
symmetric versions of terms 2, 4 and 6, respectively. Overall, we see that the
procedure is effective in estimating the spectral mass supported on lines. One way
to remove the spikes is to use the average of neighboring spectral mass on the line.
From the graphs in Figure 2, we also see the effects of the band-limitness of Yt
[see (6.5)] in the sudden drop-offs.
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FIG. 3. Spectral estimates on different lines; (α,ω)= (0.5,0.5); sample size, 16385; —, estimated
real part; · · · , estimated imaginary part; - · -, theoretical real part; theoretical imaginary parts are
all 0 for this example and are not plotted.

In reality, we do not have independent realizations with which to average the
periodograms. Using the same model, we generated one realization of Xt for
t = −213, . . . ,213. Then a smoothed periodogram of the form in (5.2) is used
to estimate the spectral mass on each of the support lines. Results are given in
Figure 3.

Symmetry properties given in (2.5) make some graphs redundant. Consequently,
some graphs are not plotted. We see that the estimates are generally very close
to the theoretical ones. These computations confirm the results of Theorems 5.2
and 5.3. Spikes at the intersection of spectral support lines (see Figure 2) are
removed. The values at such intersection points are determined by the direction
of smoothing. If the lines of spectral support are not known a priori, the results
of Theorems 5.2 and 5.3 imply that one can search for these using a grid of
points, by computing smoothed periodograms in a grid of directions at each of
these points and recording the largest magnitude among these directions at each
point. Set an appropriate threshold level to remove all those points whose spectral
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magnitude is below the threshold. Then by connecting the remaining points one
obtains information about the locations of the spectral support lines. Alternatively,
one can search for (α,w) in that if certain statistics from the spectral estimate
along the line represented by (α,w) are significantly different from 0 then (α,w)

represents a line of spectral support. Spectral mass on these lines of spectral
support can be estimated. The spectral function f (·) of the unobserved signal Y (t)
can be estimated from estimates of off-diagonal spectral lines in (6.3). These are
obviously computationally intensive and are not pursued here.

7. Proofs. We need the following lemmas in the derivations of the results and
they are used often.

LEMMA 7.1. Let

Dn(x)=
n−1∑
t=0

eitx = einx − 1

eix − 1
(7.1)

and

D̃n(x)= einx − 1

ix
.

Then D′
n(x) = Dn(x) − D̃n(x) is uniformly bounded in [−2π + c,2π − c] for a

fixed c > 0. In particular, D′
n(x) is uniformly bounded in [−π,π ] with

D′
n(x)= (einx − 1)

ix − eix + 1

(eix − 1)ix
.

The derivation is straightforward.

LEMMA 7.2. For any real a, |a|> 0, |y| ≤ π ,∫ π

−π
Dn(ax + y)Dn(x) dx =

∫ π

−π
D̃n(ax + y)D̃n(x) dx +O(logn).

PROOF. Since Dn(x)=D′
n(x)+ D̃n(x),∫ π

−π
Dn(ax + y)Dn(x) dx −

∫ π

−π
D̃n(ax + y)D̃n(x) dx

=
∫ π

−π
D′
n(ax + y)D′

n(x) dx +
∫ π

−π
D′
n(ax + y)D̃n(x) dx

+
∫ π

−π
D̃n(ax + y)D′

n(x) dx = (1)+ (2)+ (3).
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We first note that, for a fixed M > 0,∫ M

−M
|D̃n(x)|dx =

∫
|x|≤1/n2

|D̃n(x)|dx +
∫
M≥|x|≥1/n2

|D̃n(x)|dx

≤ 2

n
+O(logn)+O(logM)=O(logn).

Using Lemma 7.1, for a constant C◦,

|(1)| ≤ C◦
∫ π

−π
|D′

n(ax + y)|dx = C◦

|a|
∫ aπ+y
−aπ+y

|D′
n(x)|dx.

For a fixed d ∈ [d ′, π) with d ′ > 0, by Lemma 7.1,
∫ d

−d
∣∣D′

n(x)
∣∣dx =O(1).

For k �= 0,

∫ 2kπ+d
2kπ−d

|D′
n(x)|dx =

∫ 2πk+d
2kπ−d

∣∣∣∣einx − 1

eix − 1

∣∣∣∣
∣∣∣∣ ix − eix + 1

ix

∣∣∣∣dx
≤

(
1 + 2

π

)∫ 2kπ+d
2kπ−d

∣∣∣∣sin n
2x

sin 1
2x

∣∣∣∣dx
=

(
1 + 2

π

)∫ d

−d

∣∣∣∣sin n
2x

sin 1
2x

∣∣∣∣dx ≤O(logn).

It is clear that
∫
A |D′

n(x)|dx =O(1) for a closed interval A not containing 2πk for
integer k. Therefore |(1)| = O(logn). A similar argument applied to D̃n(ax + y)

shows that |(3)| =O(logn). Finally,

|(2)| =
∫
|x|≤d

|D′
n(ax+y)D̃n(x)|dx+

∫
π≥|x|≥d

|D′
n(ax+y)D̃n(x)|dx = (4)+(5).

For fixed a, we can choose a d such that |ax + y| ≤ 2π − c for a fixed c > 0 for
all |x| ≤ d and therefore D′

n(ax + y) is uniformly bounded by Lemma 7.1. Hence

(4)≤ C◦
∫
|x|≤d

|D̃n(x)|dx =O(logn).

For the same d, |D̃n(x)| ≤ 2d−1 for π ≥ |x| ≥ d . Hence

(5)≤ 2d−1
∫
π≥|x|≥d

|D′
n(ax + y)|dx =O(logn).

This completes the proof of Lemma 7.2. �
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PROOF OF THEOREM 3.1. Given {Xt }Nt=−N, λ′ = αµ′ +w. Let [using (3.1)
and (3.2)]

G0 ≡EIl,n(λ
′,µ′)= 1

2πn

∫∫ ∞
−∞

n−1∑
t,τ=0

eit (λ−λ′)−iτ (µ−µ′)

× eilJ (λ−µ)dH(λ,µ)e−ilJ (λ′−µ′)(7.2)

= e−ilJ (λ′−µ′) ∑
(a,b)∈L

∑
k

G1(k, a, b),

where

G1(k, a, b)≡G1(k, a, b,λ
′,µ′;n, l, J )≡G1

≡ 1

2πn

∫ µ′+π+2kπ

µ′−π+2kπ
Dn(λ− λ′)Dn(−µ+µ′)eilJ (λ−µ)

× fa,b(µ)δλ,aµ+b dµ.

Let x = µ − µ′ − 2πk, µ = x + µ′ + 2πk. Then, using λ = aµ + b and
λ′ = αµ′ +w,

G1 = 1

2πn

∫ π

−π
Dn

(
ax + (a − α)µ′ + b−w + 2πka

)
Dn(−x)

× eilJ (a−1)xfa,b(x +µ′ + 2πk)dx eilJ [b+(a−1)(µ′+2πk)]

since

−µ+µ′ = −x − 2πk, Dn(−µ+µ′)=Dn(−x − 2πk)=Dn(−x),
λ−µ= (a − 1)x + b+ (a − 1)(µ′ + 2πk).

Notice that e−ilJ (λ′−µ′)eilJ [b+(a−1)(µ′+2πk)] = exp{ilJ (2πka + (a − α)µ′ + b −
w)}. Then, using (3.4),

G0 = ∑
(a,b)∈L

∑
k

eilJ ·y(k,a,b;λ,µ)G2,(7.3)

with

G2 = 1

2πn

∫ π

−π
Dn(ax + y)Dn(−x)eilJ (a−1)xfa,b(x +µ′ + 2πk)dx.

Because of the continuous differentiability of fa,b, we have

fa,b(x +µ′ + 2πk)= fa,b(µ
′ + 2πk)+ xf ′

a,b(x
∗ + 2πk),

with x∗ between µ′ and µ′ + x. Then

G2 =G3 +G4,(7.4)
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with

G4 = 1

2πn

∫ π

−π
Dn(ax + y)Dn(−x)xeilJ (a−1)xf ′

a,b(x
∗ + 2πk)dx,

(7.5)

|G4| ≤ g(2πk) ·O
(

logn

n

)

by Assumption 2 and

G3 = fa,b(µ
′ + 2πk)

1

2πn

∫ π

−π
Dn(ax + y)Dn(−x)eilJ (a−1)x dx

= fa,b(µ
′ + 2πk)

[
1

2πn

∫ π

−π
D̃n(ax + y)D̃n(−x)eilJ (a−1)x dx(7.6)

+O

(
logn

n

)]

using Lemma 7.2. Consider

G5 = 1

2πn

∫ π

−π
ein(ax+y) − 1

i(ax + y)

e−inx − 1

−ix eilJ (a−1)x dx.(7.7)

Let nx = z. Then

G5 = 1

2πn

∫ nπ

−nπ
ei(az+ny) − 1

i(az+ ny)/n

e−iz − 1

−iz/n eilJ (a−1)z/n dz/n

= 1

2π

∫ ∞
−∞

ei(az+ny) − 1

i(az+ ny)

e−iz − 1

−iz eilJ (a−1)z/n dz

(7.8)

− 1

2π

∫
|z|>nπ

ei(az+ny) − 1

i(az+ ny)

e−iz − 1

−iz eilJ (a−1)z/n dz

=G6 −G7.

To evaluate the second term G7, we first note that |y| ≤ π and∫
|z|≥nπ

∣∣∣∣e
i(az+ny) − 1

i(az+ ny)

e−iz − 1

−iz
∣∣∣∣dz

≤ 1

|a|
[∫

z∈A1∩A
+

∫
z∈Ac

1∩A2

+
∫
|z|≥nπ+|nπ/a|

]∣∣∣∣e
i(az+ny) − 1

i(z+ ny/a)

e−iz − 1

−iz
∣∣∣∣dz,

where A1 = [−ny/a − c,−ny/a + c] with fixed c > 0 and A = {z| |z| ≥ nπ},
A2 = {z | nπ ≤ |z| ≤ nπ + |nπ/a|}. For the first integral, z ∈ A1 ∩ A and
|(ei(az+ny) − 1)/(i(z+ ny/a))| ≤ |a|, |(e−iz − 1)/(−iz)| ≤ 1/n. Therefore∫

z∈A1∩A

∣∣∣∣e
i(az+ny) − 1

i(z+ ny/a)

e−iz − 1

−iz dz

∣∣∣∣ ≤ 2|a|c
n

=O

(
1

n

)
.
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The second integral is bounded by

1

nπ

∫
z∈Ac

1∩A2

∣∣∣∣ 1

z+ ny/a

∣∣∣∣dz=O

(
logn

n

)
.

The third integral is bounded by

C

∫
|z|>nπ

1

z2
dz=O

(
1

n

)
.

From these we see

G7 = 1

2π

∫
|z|>nπ

ei(az+ny) − 1

i(az+ ny)

e−iz − 1

−iz eilJ (a−1)z/n dz=O

(
logn

n

)
.(7.9)

To evaluate G6, we note that

ei(az+ny) − 1

i(az+ ny)
=

∫ ∞
−∞

1

a
1[0,a](t) einyt/aeizt dt,(7.10)

[
e−iz − 1

−iz eilJ (a−1)z/n
]∗

=
∫ ∞
−∞

1[−lJ (a−1)/n,1−lJ (a−1)/n](t)eizt dt(7.11)

and, using the Parseval relation, we have

G6 = 1

a

∫ ∞
−∞

1(0,a](t)1[−lJ (a−1)/n,1−lJ (a−1)/n](t)einyt/a dt

=




1

iny

[
exp

(
i
ny

a

[
min(a,1 − lJ (a − 1)

n

)])

− exp
(
i
ny

a

[
max(0,

−lJ (a − 1)

n
)

])]

if [0, a] ∩
[−lJ (a − 1)

n
,1 − lJ (a − 1)

n

]
�= ∅,

0, otherwise.

(7.12)

Successively using (7.2)–(7.9) and (7.12), we obtain Theorem 3.1. �

PROOF OF THEOREM 4.1. Let dn = 1/(2πn). Then

cov
(
Il,n(λ,µ), Il,n(λ

′,µ′)
)

= d2
n

n∑
t,τ,t ′,τ ′=0

[rt+lJ,t ′+lJ rτ+lJ,τ ′+lJ + rt+lJ,τ ′+lJ rτ+lJ,t ′+lJ ]

× exp
{
i
[−(t + lJ )λ+ (τ + lJ )µ+ (t ′ + lJ )λ′ − (τ ′ + lJ )µ′]}

= d2
n

n∑
t,τ,t ′,τ ′=0

[
E

∫
ei(t+lJ )u dZ(u)

∫
e−i(t ′+lJ )v dZ(v)

×E

∫
ei(τ+lJ )r dZ(r)

∫
e−i(τ ′+lJ )s dZ(s)
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+E

∫
ei(t+lJ )u dZ(u)

∫
e−i(τ ′+lJ )v dZ(v)

×E

∫
ei(τ+lJ )r dZ(r)

∫
e−i(t ′+lJ )s dZ(s)

]

× exp
{
i
[−(t + lJ )λ+ (τ + lJ )µ+ (t ′ + lJ )λ′ − (τ ′ + lJ )µ′]}

= d2
n

∫∫∫∫ n∑
t,τ,t ′,τ ′=0

[
exp

{
i
[
t (u− λ)+ τ (r +µ)+ t ′(λ′ − v)

− τ ′(µ′ + s)
]}

exp
{
ilJ [u− v + r − s]}

+ exp
{
i
[
t (u− λ)+ τ (r +µ)+ t ′(λ′ − s)

− τ ′(µ′ + v)
]}

× exp
{
ilJ [u− v + r − s]}]

× exp
{
ilJ [−λ+µ+ λ′ −µ′]} dH(u, v) dH(r, s)

= d2
n

∫∫∫∫ [
Dn(u− λ)Dn(λ

′ − v)Dn(µ+ r)Dn(−µ′ − s)

× exp
{
ilJ [u− v + r − s]}

+Dn(u− λ)Dn(−µ′ − v)Dn(µ+ r)Dn(λ
′ − s)

× exp
{
ilJ (u− v + r − s)

}]
× exp

{
ilJ (−λ+µ+ λ′ −µ′)

}
dH(u, v) dH(r, s)

= c1 + c2,

where

c1 =
{[
dn

∑
(a,b)∈L

∫
Dn(av + b− αµ−w)Dn(α

′µ′ +w′ − v)fa,b(v)

× exp
{
ilJ (av + b− v)

}
dv

]
exp

{−ilJ (λ− λ′)
}}

×
{[
dn

∑
(a′,b′)∈L

∫
Dn(µ+ a′s + b′)Dn(−µ′ − s)fa′,b′(s)

× exp
{
ilJ (a′s + b′ − s)

}
ds

]
exp

{−ilJ (µ′ −µ)
}}
,
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c2 =
{[
dn

∑
(a,b)∈L

∫
Dn(av+ b− αµ−w)Dn(−µ′ − v)fa,b(v)

× exp
{
ilJ (av + b− v)}dv

]
exp

{−ilJ (λ− λ′)
}}

×
{[
dn

∑
(a,b)∈L

∫
Dn(µ+ a′s + b′)Dn(α

′µ′ +w′ − s)fa′,b′(s)

× exp
{
ilJ (a′s + b− s)

}
ds

]
exp

{−ilJ (µ′ −µ)
}}
,

with u= av+ b, r = a′s + b′, λ= αµ+w, λ′ = α′µ′ +w′. Now each term in the
outer brackets has exactly the same form as the expectation of the periodogram
[see (7.2)]. Therefore the covariance of the periodogram has the form of the
product of the expectations of the periodogram. �

PROOF OF THEOREM 5.2. We now take the symmetrized version. From (5.7),
(5.3), (5.5) and (3.4),

Ef̂α,w(η) = ∑
(a,b)∈L

∑
k

∫
fa,b(µ+ 2πk) sinc(a, y)Kn(µ− η)dµ

(7.13)

+O

(
logn

n

)
.

Let

E0 ≡
∫ ∞
−∞

fa,b(µ+ 2πk) sinc(a, y)Kn(µ− η)dµ

=
∫ ∞
−∞

fa,b(η+ bnz+ 2πk)

× sinc
{
n+ 1

2
l(a)

[[2πka + (a − α)η+ b−w

+ (a − α)bnz]mod 2π
]}
l(a)K(z) dz.

(7.14)

By Assumption 2, we have f (η+bnz+2πk)= f (η+2πk)+bnzf
′
a,b(η

∗
k,z+2πk)

for η∗
k,z between η+ 2πk and η+ 2πk+ bnz. Then E0 =E1 +E2 with

E1 = l(a)fa,b(η+ 2πk)E3,

E2 = bn

∫
zf ′

a,b(η
∗
k,z + 2πk)

× sinc
{
n+ 1

2
l(a)

[[yη + (a − α)bnz]mod2π
]}
l(a)K(z) dz,

E3 =
∫

sinc
{
n+ 1

2
l(a)

[[yη + (a − α)bnz]mod2π
]}
K(z) dz

(7.15)
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and yη ≡ 2πka + (a − α)η+ b−w. We evaluate E2 first and then E3.

E2 = bnl(a)f
′
a,b(η+ 2πk)

∫ c

−c
zK(z)

× sinc
{
n+ 1

2
l(a)

[[yη + (a − α)bnz]mod 2π
]}
dz+ o(bn)

by the continuity of f ′ with [−c, c] the support of K for a finite c. For a = α,

E2 = bnl(a)f
′
a,b(η+ 2πk) sinc

{
n+ 1

2
l(a)(yη mod 2π)

}∫ c

−c
zK(z) dz+ o(bn)

= o(bn)

by Assumption 3. For a �= α, E2 = o(bn)+E′
2 with

E′
2 = bnl(a)f

′
a,b(η+ 2πk)

∫ c

−c
zK(z)

× sinc
{
n+ 1

2
l(n)

[[yη + (a − α)bnz]mod2π
]}
dz

= bnl(a)f
′
a,b(η+ 2πk)

∫ c

−c
zK(z) sinc

{
n+ 1

2
l(a)[(yη)2π + (a − α)bnz]

}
dz,

where (yη)2π = (yη mod 2π). Therefore

∣∣E′
2

∣∣ ≤ bnC
◦
∫ c

−c

∣∣∣∣ sinc
{
n+ 1

2
l(a)[(yη)2π + (a − α)bnz]

}∣∣∣∣dz
= C◦

∫ (yη)2π+(a−α)bnc
(yη)2π−(a−α)bnc

∣∣∣∣ sinc
{
n+ 1

2
l(a)x

}∣∣∣∣ dx

(a − α)
(7.16)

≤ C′
[∫

|x|≤1/n
+

∫
C′′>|x|>1/n

]∣∣∣∣ sinc
{
n+ 1

2
l(a)x

}∣∣∣∣dx
=O

(
1

n

)
+O

(
logn

n

)
,

where C◦,C′ are constants.
To evaluate E3, we see that, by a similar argument, for a �= α, |E3| =O(logn/

nbn).
If a = α, then

E3 =
∫ c

−c
sinc

{
n+ 1

2
l(a)(yη mod 2π)

}
K(z) dz

= sinc
{
n+ 1

2
l(a)(yη mod 2π)

}
.
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Substituting these results on E3,E2,E1 into E0 using (7.13)–(7.16), we have the
results. �

PROOF OF THEOREM 5.3. We evaluate the covariance

C4 ≡ cov
(
f̂α,w(η), f̂α′,w′(η′)

)
=

∫∫ π+

−π+
Kn(µ− η)Kn(µ

′ − η′)
(7.17)

× cov
(
In(αµ+w,µ), In(α

′µ′ +w′,µ′)
)
dµdµ′

= C5 +C6 +O

(
logn

n

)
,

with

C5 =
∫∫ π+

−π+
Kn(µ− η)Kn(µ

′ − η′)@1@2fa,b(λ
′ + 2πk)fa′,b′(−µ′ + 2πk′)

(7.18)
× sinc

(
a, y(1)

)
sinc

(
a′, y(2)

)
dµdµ′,

C6 =
∫∫ π+

π+
Kn(µ− η)Kn(µ

′ − η′)@3@4fa,b(−µ′ + 2πk)fa′,b′(λ′ + 2πk′)
(7.19)

× sinc
(
a, y(3)

)
sinc

(
a′, y(4)

)
dµdµ′

using (5.5). The sum @1 is over |y(1)| < ν and |y(2)| ≤ ν,@2 and @4 are over
(a, b) ∈ L and (a′, b′) ∈ L, while @3 is over |y(3)|< ν and |y(4)|< ν.

Now consider a typical summand of (7.18),

C7 ≡
∫∫

Kn(µ− η)Kn(µ
′ − η′)fa,b(λ′ + 2πk)fa′,b′(−µ′ + 2πk′)

(7.20)
× sinc

(
a, y(1)

)
sinc

(
a′, y(2)

)
dµdµ′.

For fixed k, k′, (a, b) ∈ L, (a′, b′) ∈ L, we evaluate C7 in the following cases:
(i) If aα′ �= a′α, because of the form of y(1) and y(2), we introduce the change

of variables

aα′µ′ − αµ= x, a′µ′ −µ= x′,

with the Jacobian

J =
∣∣∣∣aα′ −α
a′ −1

∣∣∣∣ = −aα′ + a′α �= 0

and

µ= J−1(aα′x′ − a′x), µ′ = J−1(αx′ − x).
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We have

C7 =
∫∫

A
Kn

(
J−1(aα′x′ − a′x)− η

)
Kn

(
J−1(αx′ − x)− η′)

× fa,b
(
α′J−1(αx′ − x)+w′ + 2πk

)
fa′,b′

(−J−1(αx′ − x)+ 2πk′)
× sinc

(
a, (2πka+ x + aw′ + b−w)mod2π

)
× sinc

(
a′, (2πk′a′ − x′ + b′)mod 2π

)
J−1 dx dx′,

where A is a bounded region. Using Assumption 3 and the fact that K is bounded,
there is a constant c such that

|C7| ≤ c

b2
n

g(x1 + 2πk)g
(
x2 + 2πk′)

×
∫
A

∣∣ sinc
(
a′, (2πka + x + aw′ + b−w)mod 2π

)
(7.21) × sinc

(
a′, (2πk′a′ − x′ + b′)mod 2π

)∣∣dx dx′

=O

(
log2 n

n2b2
n

)
g(x1 + 2πk)g

(
x2 + 2πk′),

with x1, x2 some fixed values. Using Assumptions 1 and 2, the contribution to C5
is shown to be O(log2 n/(n2b2

n)).
(ii) If aα′ = a′α, then, by a change of variable,

x = aα′µ′ − αµ, µ= 1

α
(aα′µ′ − x)= a′µ′ − 1

α
x,

C7 = − 1

α

∫ π+

−π+

∫
A
Kn

(
− 1

α
x + a′µ′ − η

)
Kn(µ

′ − η′)fa,b(α′µ′ +w′ + 2πk)

× fa′,b′(−µ′ + 2πk′) sinc
(
a, (x + yk,1)2π

)
× sinc

(
a′,

(−1

α
(x − αyk′,2)

)
2π

)
IA(µ′)(x) dx dµ

′,

where

yk,1 = 2πka + aw′ + b−w, yk′,2 = 2πk′a′ + b′,

with

A= [−(aα′ + α)π+, (aα′ + α)π+]
, A(µ′)= [aα′µ′ − απ+, aα′µ′ + απ+].

Let x′ = (µ′ − η′)b−1
n , µ′ = η′ + bnx

′. Then

C7 = − 1

αbn

∫
A1

∫
A
K

(
a′x′ + 1

bn

(
a′η′ − η− 1

α
x

))
K(x′)

× fa,b(α
′η′ + α′bnx′ +w′ + 2πk)fa′,b′(−η′ − bnx

′ + 2πk′)
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× sinc
(
a, (x + yk,1)2π

)
sinc

(
a′,−

(
1

α
(x − αyk′,2)

)
2π

)

× IA(η′+bnx′)(x) dx dx
′,

with A1 = [(−π+ − η′)b−1
n , (π+ − η′)b−1

n ]. Let z = x + yk,1, x = z − yk,1 [we
note that since (x + yk,1)2π = (x + (yk,1)2π)2π we can replace yk,1 by (yk,1)2π in
the following]

C7 = −1

αbn

∫
A1

∫
A′
K

(
a′x′ + 1

bn

(
a′η′ − η+ 1

α
yk,1 − 1

α
z

))
K(x′)

× fa,b(α
′η′ +w′ + 2πk + bnα

′x′)fa′,b′(−η′ + 2πk′ − bnx
′)

× sinc(a, z2π) sinc
(
a′,−

(
1

α
(z− yk,1 − αyk′,2)

)
2π

)

× IA(η′+bnx′)(z− yk,1) dz dx
′,

where A′ =A+ yk,1.
Let L′ = {l | 2πl ∈A′, l integers} which is a finite set.
For each l ∈ L′, let Al = [−π + 2πl,π + 2πl] ∩A′. Then

C7 = −1

αbn

∑
l∈L′

∫
A1

∫
Al
K

(
a′x′ + 1

bn

(
a′η′ − η+ 1

α
yk,1 − 1

α
z

))
K(x′)

× fa,b(α
′η′ + α′bnx′ +w′ + 2πk)fa′,b′(−η′ − bnx

′ + 2πk′)

× sinc(a, z2π) sinc
(
a′,−

(
1

α
(z− yk,1 − αyk′,2)

)
2π

)

× IA(η′+bnx′)(z− yk,1) dz dx
′.

Letting z′ = z− 2πl,

C7 = ∑
l∈L′

−1

αbn
Gl,(7.22)

with

Gl =
∫
A1

∫
Al−2πl

K

(
a′x′ + 1

bn

(
a′η′ − η+ 1

α
yk,1 − 1

α
2πl − 1

α
z′

))
K(x′)

× fa,b(α
′η′ +w′ + 2πk + bnα

′x′)fa′,b′(−η′ + 2πk′ − bnx
′)

× sinc(a, z′) sinc
(
a′,−

(
1

α
(z′ + 2πl − yk,1 − αyk′,2)

)
2π

)

× IA(η′+bnx′)(z
′ + 2πl − yk,1) dz

′ dx′.
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We note that Al
c ≡ Al − 2πl is centered on 0 with length at most 2π . For each

l ∈ L′, rewriting this last expression with ql ≡ a′η′ − η + 1
α
yk,1 − 1

α
2πl �= 0 and

J (l, z′, x′)= IA(η′+bnx′)(z′ + 2πl − yk,1), we have

Gl =
∫
A1

∫
Al
c

K

(
a′x′ + 1

bn

(
ql − 1

α
z′

))
K(x′)

× fa,b(α
′η′ +w′ + 2πk + bnα

′x′)fa′,b′(−η′ + 2πk′ − bnx
′)

× sinc(a, z′) sinc
(
a′,−

(
1

α
(z′ + 2πl − yk,1 − αyk′,2)

)
2π

)

× J (l, z′, x′) dz′ dx′.

Let en be a sequence such that

en = o(bn), n−1 = o(en), n−1 = o(bn), c0, c1 constants.

Then there exist constants c0, x1 and x2 such that

|Gl| ≤ c0g(x1 + 2πk)g(x2 + 2πk′)
(7.23)

×
∫
A1

[∫
|z′|≤c1en

+
∫
π≥|z′|>c1en

]
|G(z′, x′)|dz′,

where G(z′, x′) = G′(z′, x′)G′′(z′), G′(z′, x′) = K(a′x′ + (1/bn)(ql − (1/α)z′))
K(x′),

G′′(z′)= sinc(a, z′) sinc
(
a′,−

(
1

α
(z′ + 2πl − yk,1 − αyk′,2)

)
2π

)
.

We see that the first double integral in (7.23) is
∫
|z′|≤c1en

(
∫
A1

|G′(z′, x′)|dx′)
×|G′′(z′)| dz′ and

∫
A1

|G′(z′, x′)|dx′ = o(1) uniformly in z′ since en = o(bn) and

(1/bn)(ql − 1
α
z′)→ ∞. (We can also use the fact that x′ has finite range or K has

finite support.) Note that
∫
|z′|≤cen |G′′(z′)|dz′ = O( 1

n
) by the Schwarz inequality.

The second double integral in (7.23) is
∫
c1en≤|z′|≤π(|G′′(z′)| ∫A1

|G′(x′, x′)|dx′)
×dz′. But ∫

A1

|G′(z′, x′)|dx′ ≤ |a′|−1/2
∫
K2(y) dy

by the Schwarz inequality and∫
c1en≤|z′|≤π

|G′′(z′)|dz′

=O

(
1

n2

)∫
c1en≤|z′|≤π

sin(((n+ 1)/2)z′l(a))
z′
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× sin{((n+ 1/2)[−(1/α)(z′ + 2πl − yk,1 − αyk′,2)]2π l(a
′)}

(−(1/α)(z′ + 2πl − yk,1 − αyk′,2))2π
dz′

= o

(
1

n

)
.

Therefore, when ql �= 0, |Gl| = o(1/n)g(x1 + 2πk)g(x2 + 2πk′). In this case, by
Assumptions 1 and 2, the contribution from C7 to C5 is shown to be o(1/nbn).

If ql = a′η′ − η+ 1
α
yk,1 − 1

α
2πl = 0,

Gl =
∫
A1

∫
Al
c

K

(
a′x′ − 1

α
z′/bn

)
K

(
x′)

× fa,b(α
′η′ +w′ + 2πk+ bnα

′x′)fa′,b′(−η′ + 2πk′ − bnx
′)

× J (l, z′, x′)G′′(z′) dz′ dx′(7.24)

=
[∫

A1

∫
{|z′|≤c1en}∩Al

c

+
∫
A1

∫
{|z′|≥c1en}∩Al

c

]
G′′′(z′, x′)G′′(z′)

× J (l, z′, x′) dz′ dx′,

where

G′′′(z′, x′)=K

(
a′x′ − 1

α
z′/bn

)
K(x′)fa,b(α′η′ +w′ + 2πk+ bnα

′x′)

× fa′,b′(−η′ + 2πk′ − bnx
′).

Using the same argument as before, we see that the second double integral in (7.24)
is o(1/n)g(x1 + 2πk)g(x2 + 2πk′). Its total contribution to C5 is o(1/nbn). The
first double integral can be approximated by Gl,1 given below using the fact that
|z′| ≤ c1en, en = o(bn) and Lemma 7.3 (at the end of this section) with y = x′ and
z= z′, noting that G′′ and J are bounded.

Gl,1 ≡
∫
{|z′|≤c1en}∩Al

c

∫
A1

K(a′x′)K(x′)fa,b(a′η′ +w′ + 2πk+ bnα
′x′)

× fa′,b′(−η′ + 2πk′ − bnx
′)IA(η′+bnx′)(z

′ + 2πl − yk,1)G
′′(z′) dx′ dz′.

The weight function K has finite support AK and by Assumption 2 we have

Gl,1 =
∫
AK

K(a′x′)K(x′) dx′fa,b(a′η′ +w′ + 2πk)fa′,b′(−η′ + 2πk′)

×
∫
{|z′|≤c1en}∩Al

c

sinc
(
a, z′) sinc

(
a′,−

(
1

α
(z′ + 2πl − yk,1 − αyk′,2)

)
2π

)

× IA(η′+bnx′)(z
′ + 2πl − yk,1) dz

′ dx′
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+O(bn)g(a
′η′∗ +w′ + 2πk)g(−η′∗ + 2πk′)

∫
{|z′|≤c1en}∩Al

c

|G′′(z′)|dz′

≡G′
l,1 +G′′

l,1.

It is clear that |G′′
l,1| ≤O(bn)g(a

′η′∗ +w′ + 2πk)g(−η′∗ + 2πk′)O( 1
n
) and its

total contribution to C5 is O( 1
n
). To evaluate G′

l,1, let

A3 ≡ [aα′η′ − απ+ − 2πl + yk,1, aα
′η′ + απ+ − 2πl + yk,1].

Note that

IA(η′+bnx′)(z
′ + 2πl − yk,1)= IA′

3
(z′),

with

A′
3 = [

aα′(η′ + bnx
′)− απ+ − 2πl + yk,1, aα

′(η′ + bnx
′)+ απ+ − 2πl + yk,2

]
.

The condition ql = 0 means a′αη′ − αη + yk,1 − 2πl = 0. This means aα′η′ −
αη + yk,1 − 2πl = 0 by the condition a′α = aα′. Now η ∈ [−π,π ], π+ > π, x′
is bounded. Therefore 0 ∈ A0

3, the interior of A3, and then IA3(z
′) = 1 when

|z′| ≤ c1en for large n. Also ql = 0 implies 0 ∈Al
c, so, for large n, the inner integral

of G′
l,1 is

G4 ≡
∫
|z′|≤c1en

sinc
(
a, z′) sinc

(
a′,−

(
1

α
(z′ + 2πl − yk,1 − αyk′,2)

)
2π

)
dz′.

If q ′
l ≡ ( 1

α
yk,1 + yk′,2 − 1

α
2πl)2π �= 0, then G4 = o( 1

n
). If q ′

l = 0, then, for large n,

G4 =
∫
|z′|≤c1en

sinc(a, z′) sinc
(
a′,− 1

α
z′

)
dz′

= −α
∫
|x|≤c1en/α

sinc(a,−αx) sinc(a′, x) dx.

Following an argument like that leading to (7.7)–(7.12) and using the Parseval
identity, we have∫

|x|≤c1en/α
sinc(a,−αx) sinc(a′, x) dx = 2π

n+ 1
l(α,α′, a, a′)+ o

(
1

n

)

with

l(α,α′, a, a′)= min
(
α′ min(a,1)

min(a′,1)
,1

)
min(a′,1)

aα′ .

In this case,

Gl,1 = fa,b(a
′η′ +w′ + 2πk)fa′,b′(−η′ + 2πk′)

∫
AK

K(a′x′)K(x′) dx′

×
[−α2π

n+ 1
l(α,α′, a, a′)+ o

(
1

n

)]
.
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In summary, under the assumption aα′ = a′α,

C7 = 1

bn

∑
l∈L′′

fa,b(a
′η′ +w′ + 2πk)fa′,b′(−η′ + 2πk′)

(7.25)

×
[∫

K(a′x′)K(x′) dx′ 2π

n+ 1
l(α,α′, a, a′)+ o

(
1

n

)]
,

where, for each k, k′, a, b, a′, b′, L′′ = L′ ∩ L′
1 ∩ L′

2 with

L′ = {
l |2πl ∈A′ ≡ [ − (aα′ + α)π+, (aα + α)π+] + yk,1

}
,

yk,1 = 2πka + aw′ + b−w,

L′
1 =

{
l
∣∣∣ql ≡ a′η′ − η+ 1

α
(yk,1 − 2πl)= 0

}
,

L′
2 =

{
l
∣∣∣q ′

l =
(

1

α
(yk,1 − 2πl)+ yk′,2

)
2π

= 0
}

and

yk′,2 = 2πk′a′ + b′.

However, we note that if there is an l ∈ L′
1 then l ∈ L′ and the condition ql = 0 is

0 = αa′η′ − αη+ 2πka + aw′ + b−w − 2πl

= 2πka + b+ a(α′η′ +w′)− (αη+w)− 2πl

by the condition aα′ = αa′. This is the same as y(k, a, b; ξ, ξ ′) = 0 mod 2π .
Substituting ql = 0 into q ′

l = 0 in L′
2, we have (−a′η′ + η + yk′,2)2π = 0. This

is the same as y(k′, a′, b′,−η,−η′) = 0 mod 2π . Therefore the sum over l ∈ L′′
in (7.25) can be replaced by the restriction

δaα′−a′α,0δ(y(k;a,b;ξ,ξ ′)),0δ(y(k′;a′,b′;−η,−η′)),0.

Substituting the modified (7.25) into (7.20) and (7.18), we have C5 in (7.17) and
the first term in (5.8). By a similar argument for C6 in (7.19), we obtain the second
term in (5.8). This completes the proof. �

LEMMA 7.3. If K(x) ∈L∞ ∩L1 and

K(x)→ 0 as |x| → ∞,

then, for e �= 0,∫ (
K(ey + z)−K(ey)

)
K(y)g(y, z) dy → 0 as z→ 0

for a bounded function g.
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PROOF. Let |g| ≤ c. Then∫ (
K(ey + z)−K(ey)

)
g(y, z)K(y) dy

=
[∫

|y|≥L
+

∫
|y|≤L

](
K(y)g(y, z)

(
K(ey + z)−K(ey)

))
dy.

Given any ε > 0, since K(x) ∈ L1 and K(x) → 0 as |x| → ∞ there exists an
L> 0 such that∣∣∣∣

∫
|y|≥L

g(y, z)K(y)
(
K(ey + z)−K(ey)

)
dy

∣∣∣∣< ε/2.

By Lusin’s theorem, there exists a continuous function Kc,ε(y) such that

∫
|y|≤L

∣∣K(ey)−Kc,ε(ey)
∣∣2 dy ≤ ε2

36M2
,

where M2 = c2 ∫
K2(y) dy. Then∣∣∣∣

∫
|y|≤L

g(y, z)K(y)
(
K(ey)−K(ey + z)

)∣∣∣∣dy
≤

[∫
|y|≤L

g2(y, z)K2(y) dy

∫
|y|≤L

(
K(ey)−K(ey + z)

)2
dy

]1/2

=M

{∫
|y|≤L

[
K(ey)−Kc,ε(ey)+Kc,ε(ey)−Kc,ε(ey + z)

+Kc,ε(ey + z)−K(ey + z)
]2
dy

}1/2

≤ √
3M

{∫
|y|≤L

[
K(ey)−Kc,ε(ey)

]2
dy

+
∫
|y|≤L

[
Kc,ε(ey)−Kc,ε(ey + z)

]2
dy

+
∫
|y|≤L

[
Kc,ε(ey + z)−K(ey + z)

]2
}1/2

≤ √
3M

[
ε2

36M2
+ ε2

36M2
+ ε2

36M2

]1/2

= ε

2

since ∫
|y|≤L

(
Kc,ε(ey)−Kc,ε(ey + z)

)2
dy ≤ ε2

36M2

for z sufficiently small by the continuity of Kc,ε(u) for |u| ≤ 2L.



296 K.-S. LII AND M. ROSENBLATT

Therefore, for any ε > 0, one can choose z sufficiently small such that∣∣∣∣
∫
g(y, z)K(y)

(
K(ey)−K(ey + z)

)
dy

∣∣∣∣ ≤ ε

and the lemma is proved. �
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