A comment on a conjecture of N . Wiener

M. Rosenblatt
Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112, United States

ARTICLE INFO

Article history:

Received 7 August 2008
Received in revised form 2 September 2008
Accepted 2 September 2008
Available online 6 September 2008

MSC:

60
36
60G10
37M10

Abstract

N . Wiener conjectured that a necessary and sufficient condition for a stationary process to be representable as a one-sided function of a sequence of independent, identically distributed random variables and its shifts is that its backward tail field be trivial. Here it is shown that the condition is not sufficient for such a representation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

$$
\begin{aligned}
& \text { Let }\left\{X_{n},-\infty<n<\infty\right\} \text { be a stationary process with } \\
& \qquad \mathscr{B}_{n}=\mathscr{B}\left\{X_{j}, j \leq n\right\}
\end{aligned}
$$

the σ-field generated by the random variables $X_{j}, j \leq n$. Let $\left\{\xi_{n},-\infty<n<\infty\right\}$ be a sequence of independent, identically distributed random variables. In Wiener (1958) the question of under what circumstances a stationary process $\left\{X_{n}\right\}$ could have a one-sided representation

$$
\begin{equation*}
X_{n}=f\left(\xi_{n}, \xi_{n-1}, \ldots\right) \tag{1}
\end{equation*}
$$

in terms of iid random variables was discussed. It was conjectured there that a necessary and sufficient condition for such a representation was that the backward tail field

$$
\begin{equation*}
\mathcal{B}_{-\infty}=\bigcap_{n} \mathscr{B}_{n}=\{\emptyset, \Omega\} \tag{2}
\end{equation*}
$$

be trivial. This was shown to be true for stationary countable state Markov chains in Rosenblatt (1960). A partial extension of these results to continuous state Markov sequences was given by Hanson (1963). In this note it will be shown that there are stationary sequences $\left\{X_{n}\right\}$ with trivial tail field that cannot have such a one-sided representation in terms of independent, identically distributed random variables.

2. A factor

Let $x=\left(x_{n}, n=\ldots,-1,0,1, \ldots\right)$ with the x_{n} 's real, \mathfrak{M} the product σ-algebra of the 1 -dimensional Borel sets and μ a Bernoulli measure on \mathfrak{M}. T, the shift operator acting on $x\left((T x)_{n}=x_{n+1}\right)$ is a Bernoulli or B-automorphism of (M, \mathfrak{M}, μ) where M is the space of sequences x. Let $y_{0}=f\left(x_{0}, x_{-1}, \ldots\right)$ be a Borel measurable function with

$$
y_{n}=f\left(T^{n} x\right)
$$

[^0]and $y=\left(y_{n}, n=\ldots,-1,0,1, \ldots\right)$. Consider T_{1} the shift operator on y sequences. M_{1} is the space of y sequences, \mathfrak{M}_{1} the σ-algebra on y sequences and μ_{1} the measure on \mathfrak{M}_{1} induced by (M, \mathfrak{M}, μ). Let
$$
\phi(x)=\left\{y_{n}(x), n=\ldots,-1,0,1, \ldots\right\}
$$

Then

$$
\begin{align*}
\phi(T x) & =\left\{y_{n+1}(x), n=\ldots,-1,0,1, \ldots\right\} \\
& =T_{1} \phi(x) \tag{3}
\end{align*}
$$

so that $\phi: M \rightarrow M_{1}$ is a homomorphism and T_{1} is a factor automorphism of the B-automorphism T (see Cornfield and Sinai (1989)). But it is known that a factor-automorphism of a B-automorphism is also a B-automorphism (see Ornstein (1974)). So the shift T_{1} acting on a process (1) with a one-sided representation is a B-automorphism.

If for any measurable set $A \in \mathfrak{M}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(T^{n} x \in A \mid x_{j}, j \leq 0\right)=\lim _{n \rightarrow \infty} P\left(A \mid x_{j}, j \leq-n\right)=P(A) \tag{4}
\end{equation*}
$$

($\mathscr{B}_{-\infty}$ is trivial), any automorphism with this property is called a K-automorphism.
In Kalikow (1982) a transformation referred to as " T, T^{-1} " leads to a process that is shown to be a K-automorphism, but not Bernoulli. Set $Q=(1,-1)$ and the random variables $\left\{w_{i}\right\}_{i \in \mathbb{Z}}$ independent, identically distributed random variables (iid) with

$$
w_{i}= \begin{cases}1 & \text { with probability } \frac{1}{2} \\ -1 & \text { with probability } \frac{1}{2}\end{cases}
$$

Let T be the shift $(T(w))_{i}=w_{i+1}$ for each $w=\left\{w_{i}\right\}_{i \in \mathbb{Z}}$ in $\Omega=Q^{Z}$. The transformation S on $\Omega_{1} \times \Omega_{2}$ is set up so that

$$
S\left(\left({ }_{1} w,{ }_{2} w\right)\right)= \begin{cases}\left(T\left({ }_{1} w\right), T\left({ }_{2} w\right)\right) & \text { if }_{2} w_{0}=1 \\ \left(T^{-1}\left({ }_{1} w\right), T\left({ }_{2} w\right)\right) & \text { if }_{2} w_{0}=-1\end{cases}
$$

and $\left({ }_{1} w^{\prime},{ }_{2} w^{\prime}\right)_{n}=\left(S^{n}\left({ }_{1} w,{ }_{2} w\right)\right)_{0}$. Let

$$
X(i, w)= \begin{cases}0 & \text { if } i=0 \\ \sum_{j=0}^{i-1} w_{j} & \text { if } i>0 \\ -\sum_{j=-1}^{-i} w_{j} & \text { if } i<0\end{cases}
$$

One can show that

$$
{ }_{2} w_{i}^{\prime}={ }_{2} w_{i}, \quad{ }_{1} w_{i}^{\prime}={ }_{1} w_{X(i, 2 w)} .
$$

The T, T^{-1} transformation is a K-transformation that Kalikow has shown is not a Bernoulli transformation. By the discussion given earlier it is clear we have correspondingly a stationary process $\left({ }_{1} w^{\prime},{ }_{2} w^{\prime}\right)_{n}$ with trivial backward tail field that cannot have a representation of the form (1).

References

Cornfield, I., Sinai, Ya., 1989. Basic notions of ergodic theory and examples of dynamical systems. In: Sinai, Ya. (Ed.), Dynamical Systems II. Springer-Verlag, pp. 2-27.
Hanson, D., 1963. On the representation problem for stationary stochastic processes with trivial tail field. J. Math. Mech. 12, 293-301.
Kalikow, S., 1982. T, T^{-1} transformation is not loosely Bernoulli. Ann. Math. 115, 393-409.
Ornstein, D., 1974. Ergodic Theory, Randomness and Dynamical Systems. Yale University Press.
Rosenblatt, M., 1960. Stationary Markov chains and independent random variables. J. Math. Mech. 9, 945-950.
Wiener, N., 1958. Nonlinear Problems in Random Theory. MIT Press, John Wiley.

[^0]: E-mail address: mrosenblatt@ucsd.edu.
 0167-7152/\$ - see front matter © 2008 Elsevier B.V. All rights reserved.
 doi:10.1016/j.spl.2008.09.001

