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1. Introduction

Let {X,, —00 < n < oo} be a stationary process with
By = B{X;,j < n}

the o -field generated by the random variables X;, j < n. Let {§,, —00 < n < oo} be a sequence of independent, identically
distributed random variables. In Wiener (1958) the question of under what circumstances a stationary process {X,} could
have a one-sided representation

Xn=f($n7$n—la~--) (1)
in terms of iid random variables was discussed. It was conjectured there that a necessary and sufficient condition for such
a representation was that the backward tail field

Bno = ﬂﬂn = {0, 2} ()

be trivial. This was shown to be true for stationary countable state Markov chains in Rosenblatt (1960). A partial extension of
these results to continuous state Markov sequences was given by Hanson (1963). In this note it will be shown that there are
stationary sequences {X,} with trivial tail field that cannot have such a one-sided representation in terms of independent,
identically distributed random variables.

2. Afactor

Letx = (x,,n = ...,—1,0,1,...) with the x,,’s real, 9t the product o -algebra of the 1-dimensional Borel sets and u
a Bernoulli measure on 9. T, the shift operator acting on x ((Tx), = x,1) is a Bernoulli or B-automorphism of (M, 901, )
where M is the space of sequences x. Let yo = f (X0, X_1, . . .) be a Borel measurable function with

Yo = f(T"X)
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andy = (y,,n=...,—1,0,1,...). Consider T; the shift operator on y sequences. M; is the space of y sequences, 9, the
o-algebra on y sequences and 1 the measure on 91, induced by (M, 91, u). Let
¢(X) = {yn(x)a n=..., _13 07 17 .. '}'
Then
¢(Tx) = Yp1X),n=...,—-1,0,1,...}
= Ti¢(x) (3)

sothat ¢ : M — M is a homomorphism and T is a factor automorphism of the B-automorphism T (see Cornfield and Sinai
(1989)). But it is known that a factor-automorphism of a B-automorphism is also a B-automorphism (see Ornstein (1974)).
So the shift Ty acting on a process (1) with a one-sided representation is a B-automorphism.

If for any measurable set A € 91,

lim P(T"x € Alx;,j < 0) = lim P(Alx;.j < —n) = P(A) (4)
n—oo n—oo

(B_ is trivial), any automorphism with this property is called a K-automorphism.

In Kalikow (1982) a transformation referred to as “T, T~!"” leads to a process that is shown to be a K-automorphism, but
not Bernoulli. Set Q = (1, —1) and the random variables {w;};c7 independent, identically distributed random variables (iid)
with

1

1 with probability —

— 2

wij = 1
—1 with probability 7

Let T be the shift (T (w)); = wjy; for each w = {w;}iez in £2 = QZ. The transformation S on £2; x £2, is set up so that

(TGw), TGw)) ifywg =
(T7'Gw), TGw))  if ;wp

Il
| =
P

S(Gw, 2w)) :{

and Gw’, 2w, = (S"(Gw, 2w))o. Let

0 ifi=0
i1
ij‘ ifi>0
X(i,w) = { j=0
—1
— Z w; ifi<O0.
j=—1

One can show that
/ /
2W; = 2Wi,  1W; = 1WX(i,pw)-

The T, T~! transformation is a K-transformation that Kalikow has shown is not a Bernoulli transformation. By the
discussion given earlier it is clear we have correspondingly a stationary process (;w’, w’), with trivial backward tail field
that cannot have a representation of the form (1).
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