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a b s t r a c t

N. Wiener conjectured that a necessary and sufficient condition for a stationary process
to be representable as a one-sided function of a sequence of independent, identically
distributed random variables and its shifts is that its backward tail field be trivial. Here
it is shown that the condition is not sufficient for such a representation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let {Xn,−∞ < n <∞} be a stationary process with

Bn = B{Xj, j ≤ n}

the σ -field generated by the random variables Xj, j ≤ n. Let {ξn,−∞ < n <∞} be a sequence of independent, identically
distributed random variables. In Wiener (1958) the question of under what circumstances a stationary process {Xn} could
have a one-sided representation

Xn = f (ξn, ξn−1, . . .) (1)

in terms of iid random variables was discussed. It was conjectured there that a necessary and sufficient condition for such
a representation was that the backward tail field

B−∞ =
⋂
n

Bn = {∅,Ω} (2)

be trivial. This was shown to be true for stationary countable stateMarkov chains in Rosenblatt (1960). A partial extension of
these results to continuous state Markov sequences was given by Hanson (1963). In this note it will be shown that there are
stationary sequences {Xn} with trivial tail field that cannot have such a one-sided representation in terms of independent,
identically distributed random variables.

2. A factor

Let x = (xn, n = . . . ,−1, 0, 1, . . .) with the xn’s real,M the product σ -algebra of the 1-dimensional Borel sets and µ
a Bernoulli measure onM. T , the shift operator acting on x ((Tx)n = xn+1) is a Bernoulli or B-automorphism of (M,M, µ)
whereM is the space of sequences x. Let y0 = f (x0, x−1, . . .) be a Borel measurable function with

yn = f (T nx)
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and y = (yn, n = . . . ,−1, 0, 1, . . .). Consider T1 the shift operator on y sequences. M1 is the space of y sequences,M1 the
σ -algebra on y sequences and µ1 the measure onM1 induced by (M,M, µ). Let

φ(x) = {yn(x), n = . . . ,−1, 0, 1, . . .}.

Then

φ(Tx) = {yn+1(x), n = . . . ,−1, 0, 1, . . .}

= T1φ(x) (3)

so that φ : M → M1 is a homomorphism and T1 is a factor automorphism of the B-automorphism T (see Cornfield and Sinai
(1989)). But it is known that a factor-automorphism of a B-automorphism is also a B-automorphism (see Ornstein (1974)).
So the shift T1 acting on a process (1) with a one-sided representation is a B-automorphism.
If for any measurable set A ∈M,

lim
n→∞

P(T nx ∈ A|xj, j ≤ 0) = lim
n→∞

P(A|xj, j ≤ −n) = P(A) (4)

(B−∞ is trivial), any automorphism with this property is called a K -automorphism.
In Kalikow (1982) a transformation referred to as ‘‘T , T−1’’ leads to a process that is shown to be a K -automorphism, but

not Bernoulli. Set Q = (1,−1) and the random variables {wi}i∈Z independent, identically distributed random variables (iid)
with

wi =


1 with probability

1
2

−1 with probability
1
2
.

Let T be the shift (T (w))i = wi+1 for eachw = {wi}i∈Z inΩ = Q Z . The transformation S onΩ1 ×Ω2 is set up so that

S((1w, 2w)) =
{
(T (1w), T (2w)) if 2w0 = 1
(T−1(1w), T (2w)) if 2w0 = −1

and (1w′, 2w′)n = (Sn(1w, 2w))0. Let

X(i, w) =



0 if i = 0
i−1∑
j=0

wj if i > 0

−

−i∑
j=−1

wj if i < 0.

One can show that

2w
′

i = 2wi, 1w
′

i = 1wX(i,2w).

The T , T−1 transformation is a K -transformation that Kalikow has shown is not a Bernoulli transformation. By the
discussion given earlier it is clear we have correspondingly a stationary process (1w′, 2w′)n with trivial backward tail field
that cannot have a representation of the form (1).
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