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1 Introduction

In this section a discussion of the evolution of a notion of strong mixing as a measure
of short range dependence and with additional restrictions a sufficient condition for
a central limit theorem, is given. In the next section I will give a characterization of
strong mixing for stationary Gaussian sequences. In Sect. 3 I will give a discussion
of processes subordinated to Gaussian processes and in Sect. 4 results concerning
the finite Fourier transform is noted. In Sect. 5 a number of open questions are
considered.

In an effort to obtain a central limit theorem for a dependent sequence of random
variables in [12], I made use of a blocking argument of S.N. Bernstein [1] and was
led to what I called a strong mixing condition [2, 12]. In the blocking argument big
blocks are separated by small blocks. Consider a sequence of random variables Xn,
n D : : : ; �1; 0; 1; : : :. Let Bn and Fm be the � -fields generated by Xj, j � n and Xj,
j � m, respectively. If

sup
A2Bn;B2Fm

jP.A \ B/ � P.A/P.B/j � ˛.m � n/;

m > n with ˛.k/ ! 0 as k ! 1, the sequence fXng is said to satisfy a strong
mixing condition. Such a sequence needn’t be stationary. A sequence with such a
strong mixing condition can be thought of as one with short range dependence and
its absence an indicator of long range dependence.
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The strong mixing condition together with the following assumptions are enough
to obtain asymptotic normality for partial sums of the sequence. Assume that EXn D
0 for all n. The critical additional assumptions are
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� h.b � a/

as b � a ! 1 with h.m/ " 1 as m ! 1, where x.�/ � y.�/ means
x.�/=y.�/ ! 1 as � ! �0 and
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2Cı

D O .h.b � a//1Cı=2

as b � a ! 1 for some ı > 0.

The following theorem was obtained.

Theorem 1. If fXng, E.Xn/ D 0, is a sequence satisfying a strong mixing condition
and assumptions 1. and 2., we can determine numbers kn, pn, qn satisfying

kn.pn C qn/ D n;

kn; pn; qn ! 1;

qn=pn ! 0

as n ! 1 such that

Sn
p

kn � h.pn/
.Sn D

nX

jD1

Xj/

is asymptotically normally distributed with positive variance (see [12] and [2]).

In the argument the numbers kn˛.qn/ have to be made very small. An elegant
statement of a result can be given in a stationary case (see Bradley [3] for a proof).

Theorem 2. Let fXng be a strictly stationary sequence with E.X0/ D 0, EX2
0 < 1

that is strongly mixing and let �2
n D ES2

n ! 1 as n ! 1. The sequence .S2
n=�2

n / is
uniformly integrable if and only if Sn=�n is asymptotically normally distributed with
mean zero and variance one.
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In the paper [9] Kolmogorov and Rozanov showed that a sufficient condition for a
stationary Gaussian sequence to be strongly mixing is that the spectral distribution
be absolutely continuous with positive continuous spectral density.

One should note that the concept of strong mixing here is more restrictive in the
stationary case than the ergodic theory concept of strong mixing. A very extensive
discussion of our notion of strong mixing as well as that of other related concepts is
given in the excellent three volume work of Richard Bradley [3].

In 1961 corresponding questions were taken up for what is sometimes referred
as narrow band-pass filtering in the engineering literature. These results are strong
enough to imply asymptotic normality for the real and imaginary parts of the
truncated Fourier transform of a continuous time parameter stationary process.
Let X.t/, EX.t/ D 0, be a separable strongly mixing stationary process with
EX4.t/ < 1 that is continuous in mean of fourth order. If the covariance and 4th
order cumulant function are integrable, it than follows that

�
1

2
T

��1=2 Z T

0

cos.�t/X.t/dt;

�
1

2
T

��1=2 Z T

0

sin.�t/X.t/dt; � 6D 0;

are asymptotically normal with variance

� f .�/

and independent as T ! 1 (f .�/ the spectral density of X.t/ at �). This follows
directly from the results given in [14].

2 Gaussian Processes

In the 1961 paper [13] a Gaussian stationary sequence fYkg with mean zero and
covariance

rk D EY0Yk D .1 C k2/�D=2 � k�D as k ! 1;

0 < D < 1=2, was considered. The normalized partial sums process

Zn D n�1CD
nX

kD1

Xk

of the derived quadratic sequence

Xk D Y2
k � 1
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was shown to have a limiting non-Gaussian distribution as n ! 1. The character-
istic function of the limiting distribution is

�.�/ D exp

 

1

2

1X

kD2

.2i�/kck=k

!

with

ck D
Z 1

0

dx1 � � �
Z 1

0

dxkjx1 � x2j�Djx2 � x3j�D � � � jxk�1 � xkj�Djxk � x1j�D:

Since conditions 1. and 2. are satisfied by Xk, the fact that the limiting distribution
is non-Gaussian implies that fXkg and fYkg cannot be strongly mixing.

In their paper Helson and Sarason [6] obtained a necessary and sufficient
condition for a Gaussian stationary sequence to be strongly mixing. This was that
the spectral distribution of the sequence be absolutely continuous with spectral
density w

w D jPj2 exp.u C Qv/

with P a trigonometric polynomial and u and v real continuous functions on the unit
circle and Qv the conjugate function of v.

It is of some interest to note that the functions of the form

exp.u C Qv/ D w;

with u and w continuous are such that wn is integrable for every positive or negative
integer n. (The set of such functions w is W.) An example with a discontinuity at
zero is noted in Ibragimov and Rozanov [7]

f .�/ D exp

( 1X

kD1

cos.k�/

k.ln k C 1/

)

:

Making use of results on trigonometric series with monotone coefficients, it is clear
that

1X

kD1

sin.k�/

k.ln k C 1/

is continuous and that

ln f .�/ � ln ln
1

�
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as � ! 0. So, f .�/ and 1=f .�/ are both spectral densities of strongly mixing
Gaussian stationary sequences. f .�/ has a discontinuity at � D 0 while 1=f .�/

is continuous with a zero at � D 0. Sarason has also shown in [15, 16] that the
functions log w, w 2 W, have vanishing mean oscillation. Let f be a complex
function on .��; �� and I an interval with measure jIj.

Let

fI D jIj�1

Z

I
f .x/dx

and

Ma.f / D sup
jIj�a

jIj�1

Z

I
jf .x/ � fIjdx:

f is said to be of bounded mean oscillation if M2�.f / < 1. Let

M0.f / D lim
a!0

Ma.f /:

f is said to be of vanishing mean oscillation if f is of bounded mean oscillation and
M0.f / D 0.

In the case of a vector valued (d-vector) stationary strong mixing Gaussian
sequence there is d0 � d such that the spectral density matrix w.�/ has rank d0 for
almost all �. If d0 D d the sequence is said to have full rank. The case of sequences
of rank d0 < d can be reduced to that of sequences of full rank. A result of Treil and
Volberg [20] in the full rank case is noted.

Theorem 3. Assume that the spectral density w of a stationary Gaussian process is
such that w�1 2 L1. The process is strongly mixing if and only if

lim sup
j�j!1

n

det.w.�// exp .�Œlog det w�.�//
o

D 1;

where det.w.�// and Œlog det w�.�/ are the harmonic extensions of w and log detw
on the unit circle at the point � on the unit disc.

The harmonic extension u on the unit disc of a function f on the unit circle is given
via the Poisson kernel

Pr.�/ D 1 � r2

1 � 2r cos � C r2
D Re

�
1 C rei�

1 � rei�

�

; 0 � r � 1;

u.rei� / D 1

2�

Z �

��

Pr.� � t/f .eit/dt:
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3 Processes Subordinated to Gaussian Processes

In the paper [18] M. Taqqu considered the weak limit of the stochastic process

Zn.t/ D n�1CD
Œnt�
X

kD1

Xk

as n ! 1 and noted various properties of the limit process. Here Œs� denotes the
greatest integer less than or equal to s. M. Taqqu [19] and R. Dobrushin and P. Major
[5] discovered about the same time that the simple example of M. Rosenblatt was
a special case of an interesting broad class of nonlinear processes subordinated to
the Gaussian stationary processes. Consider fXng, EXn D 0, EX2

n D 1 a stationary
Gaussian sequence with covariance

r.n/ D n�˛L.n/; 0 < ˛ < 1;

where L.t/, t 2 .0; 1/ is slowly varying. Let H.�/ be a function with

EH.Xn/ D 0; EH2.Xn/ D 1:

Hj.�/ is the jth Hermite polynomial with leading coefficient one. Then H.�/ can be
expanded in terms of the Hj’s

H.Xn/ D
1X

jD1

cjHj.Xn/

with

1X

jD1

c2
j jŠ < 1:

Assume that ˛ < 1=k with k the smallest index such that ck 6D 0 (H is then said to
have rank k). Set

AN D N1�k˛=2.L.N//k=2

and

YN
n D A�1

N

Nn�1X

jDN.n�1/

H.Xj/;
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n D : : : ; �1; 0; 1; : : : and N D 1; 2; : : :. Then the finite dimensional distributions of
YN

n , n D : : : ; �1; 0; 1; : : : as N ! 1 tend to those of the sequence Y�
n

Y�
n D d�k=2ck

Z

ein.x1C���Cxk/ ei.x1C���Cxk/ � 1

i.x1 C � � � C xk/
jx1j ˛�1

2 � � � jxkj ˛�1
2 dW.x1/ � � � dW.xk/

with W.�/ the Wiener process on .�1; 1/ where in the integration it is understood
that the hyper-diagonals xi D xj; i ¤ j are excluded, and

d D
Z

exp.ix/jxj˛�1dx D 2� .x/ cos
�˛�

2

�

:

In [4] P. Breuer and P. Major obtained central limit theorems for nonlinear functions
of Gaussian stationary fields. As in the discussion of results for noncentral limit
theorem we shall consider the case of stationary sequences. Again, let

YN
n D A�1

N

Nn�1X

jDN.n�1/

H.Xj/;

with Xn a stationary Gaussian sequence EXn D 0, EX2
n D 1. H.�/ is real-valued with

EH.Xn/ D 0; EH2.Xn/ < 1:

Assume that H has rank k and that

X

n

jr.n/jk < 1

(r.�/ the covariance function of the X sequence). Let Hl be the lth Hermite
polynomial. With AN D N1=2 the limits

lim
N!1 E

�

YN
0 .Hl/

�2 D lim
N!1 A�2

N lŠ
X

�N�i;j<0

rl.i � j/ D �2
l lŠ

exist for all l � k and

�2 D
1X

lDk

c2
l lŠ�2

l < 1:

The finite dimensional distributions of YN
n as N ! 1 tend to the finite dimensional

distributions of �Zn with the Zn i.i.d. standard normal random variables. T.C. Sun
obtained the case of this result for k D 2 in [17].
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4 Finite Fourier Transform

In 1961 paper [14] I showed that in the case of a separable continuous time
parameter process a variety of filters amounting to narrow band-pass filtering, under
the assumption of strong mixing, integrability of the covariance function and the
4th order cumulant function, stationarity and positivity of the spectral density imply
asymptotic normality. This implies that

Z T

0

cos.�t/X.t/dt;
Z T

0

sin.�t/X.t/dt

are asymptotically normal as T ! 1 for all � and independent for � 6D 0 as
T ! 1.

A recent paper of Peligrad and Wu [11] is of considerable interest. They use
a stationary ergodic Markov sequence 	n on the probability space .˝;F ; P/ with
marginal distribution

�.A/ D P.	0 2 A/:

Let

L 2
0 .�/ D

�

h W
Z

h2d� < 1;

Z

hd� D 0

	

;

Fk D Bf	j; j � kg; Xj D h.	j/:

The condition

E.X0jF�k/ D 0 P almost surely (1)

is of particular interest. They obtain the following theorem among others.

Theorem 4. If .Xk/ is stationary ergodic satisfying (1) then for almost all � 2
.0; 2�/

lim
n!1

EjSn.�/j2
n

D g.�/; Sn.�/ D
Œn��
X

kD1

Xk

with g integrable over Œ0; 2�� and

1p
n

ŒRe.Sn.�//; Im.Sn.�//� ) ŒN1.�/; N2.�/�

under P with Sn.�/ the Fast Fourier transform computed at � and N1.�/, N2.�/

independent identically distributed normal random variables with mean zero and
variance g.�/=2. One can always take Xk as a function of a Markov sequence 	n D
.Xk; k � n/.
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In a number of examples one considers derived sequences

ZN
n D A�1

N

X

j2BN
n

	j N D 1; 2; : : : ;

with

BN
n D fj W nN � j < .n C 1/Ng

and AN a norming constant (which needn’t be
p

N). The interest is in convergence of
the finite dimensional distributions of the sequence ZN

n as N ! 1 to finite dimen-
sional distributions of a limit sequence Z�

n . The object is to determine the appropriate
norming constant AN and the character of the nontrivial limit sequence Z�

n . One is
also led to the following question – for which sequences 	n does one have

.	n1 ; : : : ; 	nk /
dD .ZN

n1
; : : : ; ZN

nk
/

(equality in distribution for all N D 1; 2; : : : and n1; : : : ; nk). If this is satisfied with
AN D N˛ , 	n is said to be a self-similar sequence with self-similarity parameter ˛.

In the case of the limit theorems of Taqqu [18, 19], Dobrushin and Major [5] the
limit processes are self-similar with self-similarity parameter ˛.

It’s of interest to note that if the covariances

r.n/ D n�˛L.n/; ˛ 2 .0; 1/

with L.n/ slowly varying are monotone

f˛.x/ D
1X

nD1

r.n/ cos nx;

g˛.x/ D
1X

nD1

r.n/ sin nx;

converge uniformly outside an arbitrarily small neighbourhood of x D 0 and

f˛.x/ � x˛�1L.x�1/� .1 � ˛/ sin

�
1

2
�˛

�

;

g˛.x/ � x˛�1L.x�1/� .1 � ˛/ cos

�
1

2
�˛

�

as x ! 0C. The real spectral density of the Gaussian stationary process with
covariances r.n/ has a singularity at x D 0. Given the Hermite polynomial Hk

consider the derived process Hk.Xj/ (Xj the Gaussian process). The covariance of
the derived process
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EHk.X0/Hk.Xj/ D kŠr.j/k

so its spectral density will have a singularity at zero if and only if k˛ < 1.
A limit theorem of Kesten and Spitzer [8] is of great interest.

Sn D X1 C � � � C Xn; n � 1;

is the simple random walk on the integers (Xi D ˙1 with probability 1/2 and i.i.d.)
with random sequence 	.x/, x integer, i.i.d. with the same distribution as the Xi’s but
independent of them. The asymptotic behaviour of

Un D
nX

kD1

	.Sk/

is considered as n ! 1. Us is the linearly interpolated process. They show that

n�3=4Unt; t � 0; n D 1; 2; 3; : : :

converges weakly to

Z 1

�1
Lt.x/dZ.x/; t � 0;

where Lt.x/ is the local time at x of Brownian motion Bt and Z.x/ is a Brownian
motion with time �1 < x < 1.

	.Sk/, k D 1; 2; : : : can be extended to a two-sided stationary sequence as
follows. Introduce X0; X�1; X�2; : : : as i.i.d. random variables with the same dis-
tribution as the earlier random variables and independent of all the other variables.
Let 
0 D 	.0/,


i D
8

<

:

	
�
Pi�1

jD0 Xj

�

if i > 0

	
�

�Pi
jD�1 Xj

�

if i < 0
:

The sequence 
i is stationary and we obtain an approximation to its spectral density

E.
0
i/ D
(

0 if
Pi�1

jD0 Xj 6D 0 ; i > 0

E.	2.0//
�

2m
m

�
1

22m if
Pi�1

jD0 Xj D 0 ; i D 2m

and

2�2m

 

2m

m

!

� 21=2

p
2�

1p
m
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as m ! 1. This suggests that the spectral density is of the form

X

m

1p
m

cos mx

and this behaves like

.2�/�1=2� .1=2/ � �

4

as � ! 0.

5 Open Questions

The almost everywhere character (in � ) of the result of Peligrad and Wu indicates
that the asymptotics of the finite Fourier transform at points where there is a
singularity of the spectral density functions are not dealt with. This would, for
example, be the case if we had a Gaussian stationary sequence .Xj/ with covariance
of the form

r.n/ D
X

j

ˇjjnj�˛j cos n.� � �j/Lj.n/;

ˇj > 0, 0 < ˛j < 1, �j distinct, and wished to compute the finite Fourier transform
of H.Xk/ at � D �j with the leading non-zero Fourier-Hermite coefficient k of H.�/
such that k˛j < 1. As before the Lj.�/ are slowly varying. The variance of the finite
Fourier transform and its limiting distributions when properly normalized as N tends
to infinity are not determined. Of course this is just a particular example of interest
under the assumptions made in the theorem of Peligrad and Wu.

The random sequences with covariances almost periodic functions contain a large
class of interesting nonstationary processes. The harmonizable processes of this type
have all their spectral mass concentrated on at most a countable number of

� D � C b; b D bj ; j D : : : ; �1; 0; 1; : : : :

It would be of some interest to see whether one could characterize the Gaussian
processes of this type which are strongly mixing. Assume that the spectra on the
lines of support are absolutely continuous with spectral densities fb.u/. Under rather
strong conditions one can estimate the fb.�/ (see [10]). However, there are still many
open questions.

Acknowledgements I thank Professor Rafal Kulik for his help in putting this paper into coherent
form.
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