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Preliminaries

Joint work with Sebastian Cioabă.

All graphs will be finite. A(G ) will denote the adjacency matrix of a
graph G .

The terms biclique and complete bipartite subgraph will be used
interchangeably.
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Preliminaries

First let us consider the problem of partitioning the edges of a graph
by bicliques. Since each edge is a biclique, this can always be done.
However, we want to use the fewest number of bicliques possible.

Definition

The biclique partition number of a graph G is the minimum number of
bicliques necessary to partition the edges of a graph. We will denote it by
bp(G ).

In general, this graph invariant is hard to compute.
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Preliminaries

For a graph G , upper bounds on bp(G ) come from constructions. We
find bicliques whose edges partition the edge set of G .

So for example, bp(K4) ≤ 3.
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Graham-Pollak Theorem

Theorem (Graham, Pollak 1972)

The edge set of a Kn cannot be partitioned into the edge disjoint union of
less than n − 1 complete bipartite subgraphs.

bp(Kn) ≥ n − 1.

This bound is tight, and there are many partitions of Kn into n − 1
bicliques.

For example, we can take n − 1 ”stars” (i.e. Kn is partitioned into
K1,n−1,K1,n−2, ...,K1,2,K1,1).

bp(Kn) = n − 1.
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Proofs of the Graham-Pollak Theorem

Linear algebra based proofs by Tverberg (1982), Witsenhausen
(1980s), and G.W. Peck (1984).

A polynomial space proof by Vishwanathan (2008)

A counting proof by Vishwanathan (2010).
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L-Coverings

In this talk we want to consider a generalization of the Graham-Pollak
Theorem. Instead of requiring a partition of the edges of Kn, we require
that the number of times each edge is covered comes from a specified list.

Definition

Let L = {l1, ..., lk} where 0 < l1 < ... < lk are integers. An biclique
covering of Type L of a graph G is a set of complete bipartite subgraphs
of G that cover the edges of G such that the number of times each edge
of G is covered is in L.

We will denote the minimum number of bicliques required for such a
covering by bpL(G ).
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L-coverings

If L = {1}, then bpL(G ) = bp(G ).

If L = N, bpL(Kn) is the biclique cover number: bpN(Kn) = dlog2 ne
Exact results are known for very few lists L.

For L = {1, 2, ..., t}, Alon gave bounds for bpL(Kn) in 1997.

Huang and Sudakov improved his lower bound recently.
Next we will talk about some other lists.
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General upper bounds

Given any list L, how can we find upper bounds for bpL(Kn)? We have the
following recursive technique:

Proposition

For any list L, and any a and b

bpL(Ka+b−1) ≤ bpL(Ka) + bpL(Kb).
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General upper bounds

Let the vertex sets of Ka and Kb intersect on one vertex x .

We will modify an optimal L-covering of Ka and of Kb

Leave the bpL(Ka) bicliques unchanged, modify the bpL(Kb) bicliques
in Kb into bicliques in Ka+b−1.

If a biclique contains x , say x ∈ U, then replace it by (V (Ka)∪U,V ).

Michael Tait (UCSD) L-Coverings June 2012 10 / 1



General upper bounds

Edges that are completely inside Ka or Kb are covered the number of
times that they were before. Edges pq with p ∈ A \ {x} and q ∈ B \ {x}
are covered the same number of times as the edge xq which is in Kb.
Thus all edges are L-covered.
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Odd cover problem

Suppose now we ask the question, how many bicliques are necessary to
cover Kn such that each edge is covered an odd number of times?

So we are asking for bpL(Kn) where L = {1, 3, 5, 7, ...}.
This question was first asked by Babai and Frankl in 1992.

It is called the odd-cover problem.

Proposition (Cioabă and MT, 2012)

If L = {1, 3}, then

n − 1

2
≤ bpL(Kn) ≤ 4n

7
+ 2.
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Odd cover problem

Proof:

For the lower bound, let {Bi (Ui ,Wi )}di=1 be bicliques that cover Kn

such that each edge is covered either 1 or 3 times.

We want to write A(Kn) as a linear combination of matrices.

A(Kn) =
d∑

i=1

A(Bi )− 2
∑

1≤i<j<k≤d
A(Bi ∩ Bj ∩ Bk).
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Odd cover problem

Reducing over F2, we have

A(Kn) ≡
d∑

i=1

A(Bi ) (mod 2)

We use subadditivity of rank to complete the proof.

Since A(Kn) has rank at least n− 1 over F2, and each A(Bi ) has rank

2, we have 2d ≥ rank
(∑d

i=1 A(Bi )
)
≥ n − 1.
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Odd cover problem

For the upper bound, bpL(K8) = 4.

Now we use the recursion from before and induction.

bpL(Kn) ≤ bpL(Kn−7) + bpL(K8).

We note that the same lower bound holds for L = {1, 3, 5, 7, ...} with the
same proof technique.
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Even cover problem

We might ask the same question for even instead of odd.

For L = {2, 4, 6, ...}, what is bpL(Kn)?

Given the answer to the previous problem, we might expect the
answer to be linear.

Surprisingly, it is not.

Proposition

For L = {2, 4, 6, ...},
bpL(Kn) = dlog2 ne+ 1.
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L = {λ}

Now let’s consider the list L = {λ} for a fixed λ.

bpL(Kn) = bp(λKn) where λKn is the complete multigraph.

The lower bound is bp{λ}(Kn) ≥ n − 1. The proof is the same as for
the Graham-Pollak Theorem.

de Caen conjectured in 1993 that for any λ, for every n larger than
some Nλ, bp{λ}(Kn) = n − 1.

This conjecture is true for λ ≤ 18.

Perhaps we can use the recursion to show bp{λ}(Kn) ≤ n + cλ for n
large enough.
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Graham-Pollak for hypergraphs

We can also generalize the Graham-Pollak Theorem to hypergraphs.

We ask, how many complete r -partite r -uniform hypergraphs are
necessary to partition the edge set of the complete r -uniform
hypergraph on n vertices.

We denote this quantity by fr (n).
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Graham-Pollak for hypergraphs

f2(n) = bp(Kn) = n − 1.

f3(n) = n − 2.

fr (n) = Θ(ndr/2e).

In general, this problem seems very hard.
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Graham-Pollak for hypergraphs

Theorem - Cioabă, Kündgen, Verstraëte (2009)

2
(n−1

k

)(2k
k

) ≤ f2k(n)

and

f2k(n) ≤ f2k+1(n + 1) ≤
(
n − k

k

)
.

This improved a result of Alon.
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Graham-Pollak for hypergraphs

Theorem - Cioabă and MT (2012)

f2k(2k + 2) = d2k2 + 5k + 3

4
e

and

f2k+1(2k + 3) = d2k2 + 5k + 3

4
e.

This can be used to improve the general upper bound by a lower order
term.
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Open Problems

For any fixed λ, can we prove bp{λ}(Kn) ≤ n + cλ?

For fixed L, is bpL(Kn) = Θ(n1/k) for some fixed k?

What is f4(n)?
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