Generalizations of the Graham-Pollak Theorem

Michael Tait
Department of Mathematics
University of California San Diego
La Jolla, CA 92093
mtait@math.ucsd.edu

June 12, 2012

Preliminaries

- Joint work with Sebastian Cioabă.
- All graphs will be finite. $A(G)$ will denote the adjacency matrix of a graph G.
- The terms biclique and complete bipartite subgraph will be used interchangeably.

Preliminaries

- First let us consider the problem of partitioning the edges of a graph by bicliques. Since each edge is a biclique, this can always be done. However, we want to use the fewest number of bicliques possible.

Definition

The biclique partition number of a graph G is the minimum number of bicliques necessary to partition the edges of a graph. We will denote it by bp(G).

- In general, this graph invariant is hard to compute.

Preliminaries

- For a graph G, upper bounds on $\operatorname{bp}(G)$ come from constructions. We find bicliques whose edges partition the edge set of G.

- So for example, $\operatorname{bp}\left(K_{4}\right) \leq 3$.

Graham-Pollak Theorem

Theorem (Graham, Pollak 1972)
The edge set of a K_{n} cannot be partitioned into the edge disjoint union of less than $n-1$ complete bipartite subgraphs.

- $b p\left(K_{n}\right) \geq n-1$.
- This bound is tight, and there are many partitions of K_{n} into $n-1$ bicliques.
- For example, we can take $n-1$ "stars" (i.e. K_{n} is partitioned into $\left.K_{1, n-1}, K_{1, n-2}, \ldots, K_{1,2}, K_{1,1}\right)$.
- $\operatorname{bp}\left(K_{n}\right)=n-1$.

Proofs of the Graham-Pollak Theorem

- Linear algebra based proofs by Tverberg (1982), Witsenhausen (1980s), and G.W. Peck (1984).
- A polynomial space proof by Vishwanathan (2008)
- A counting proof by Vishwanathan (2010).

L-Coverings

In this talk we want to consider a generalization of the Graham-Pollak Theorem. Instead of requiring a partition of the edges of K_{n}, we require that the number of times each edge is covered comes from a specified list.

Definition

Let $L=\left\{I_{1}, \ldots, I_{k}\right\}$ where $0<I_{1}<\ldots<I_{k}$ are integers. An biclique
covering of Type \mathbf{L} of a graph G is a set of complete bipartite subgraphs of G that cover the edges of G such that the number of times each edge of G is covered is in L.

We will denote the minimum number of bicliques required for such a covering by $\mathrm{bp}_{L}(G)$.

L-coverings

- If $L=\{1\}$, then $\operatorname{bp}_{L}(G)=\operatorname{bp}(G)$.
- If $L=\mathbb{N}, \operatorname{bp}_{L}\left(K_{n}\right)$ is the biclique cover number: $\operatorname{bp}_{\mathbb{N}}\left(K_{n}\right)=\left\lceil\log _{2} n\right\rceil$
- Exact results are known for very few lists L.
- For $L=\{1,2, \ldots, t\}$, Alon gave bounds for $\operatorname{bp}_{L}\left(K_{n}\right)$ in 1997 .
- Huang and Sudakov improved his lower bound recently. Next we will talk about some other lists.

General upper bounds

Given any list L, how can we find upper bounds for $\operatorname{bp}_{L}\left(K_{n}\right)$? We have the following recursive technique:

Proposition
For any list L, and any a and b

$$
\mathrm{bp}_{L}\left(K_{a+b-1}\right) \leq \mathrm{bp}_{L}\left(K_{a}\right)+\mathrm{bp}_{L}\left(K_{b}\right)
$$

General upper bounds

- Let the vertex sets of K_{a} and K_{b} intersect on one vertex x.

- We will modify an optimal L-covering of K_{a} and of K_{b}
- Leave the $\mathrm{bp}_{L}\left(K_{a}\right)$ bicliques unchanged, modify the $\mathrm{bp}_{L}\left(K_{b}\right)$ bicliques in K_{b} into bicliques in K_{a+b-1}.
- If a biclique contains x, say $x \in U$, then replace it by $\left(V\left(K_{a}\right) \cup U, V\right)$.

General upper bounds

Edges that are completely inside K_{a} or K_{b} are covered the number of times that they were before. Edges $p q$ with $p \in A \backslash\{x\}$ and $q \in B \backslash\{x\}$ are covered the same number of times as the edge $x q$ which is in K_{b}. Thus all edges are L-covered.

Odd cover problem

Suppose now we ask the question, how many bicliques are necessary to cover K_{n} such that each edge is covered an odd number of times?

- So we are asking for $\operatorname{bp}_{L}\left(K_{n}\right)$ where $L=\{1,3,5,7, \ldots\}$.
- This question was first asked by Babai and Frankl in 1992.
- It is called the odd-cover problem.

Proposition (Cioabă and MT, 2012)
If $L=\{1,3\}$, then

$$
\frac{n-1}{2} \leq \operatorname{bp}_{L}\left(K_{n}\right) \leq \frac{4 n}{7}+2
$$

Odd cover problem

Proof:

- For the lower bound, let $\left\{B_{i}\left(U_{i}, W_{i}\right)\right\}_{i=1}^{d}$ be bicliques that cover K_{n} such that each edge is covered either 1 or 3 times.
- We want to write $A\left(K_{n}\right)$ as a linear combination of matrices.

$$
A\left(K_{n}\right)=\sum_{i=1}^{d} A\left(B_{i}\right)-2 \sum_{1 \leq i<j<k \leq d} A\left(B_{i} \cap B_{j} \cap B_{k}\right)
$$

Odd cover problem

Reducing over \mathbb{F}_{2}, we have

$$
A\left(K_{n}\right) \equiv \sum_{i=1}^{d} A\left(B_{i}\right) \quad(\bmod 2)
$$

- We use subadditivity of rank to complete the proof.
- Since $A\left(K_{n}\right)$ has rank at least $n-1$ over \mathbb{F}_{2}, and each $A\left(B_{i}\right)$ has rank 2 , we have $2 d \geq \operatorname{rank}\left(\sum_{i=1}^{d} A\left(B_{i}\right)\right) \geq n-1$.

Odd cover problem

For the upper bound, $\mathrm{bp}_{L}\left(K_{8}\right)=4$.

Now we use the recursion from before and induction.

$$
\operatorname{bp}_{L}\left(K_{n}\right) \leq \mathrm{bp}_{L}\left(K_{n-7}\right)+\mathrm{bp}_{L}\left(K_{8}\right) .
$$

We note that the same lower bound holds for $L=\{1,3,5,7, \ldots\}$ with the same proof technique.

Even cover problem

We might ask the same question for even instead of odd.

- For $L=\{2,4,6, \ldots\}$, what is $\operatorname{bp}_{L}\left(K_{n}\right)$?
- Given the answer to the previous problem, we might expect the answer to be linear.
- Surprisingly, it is not.

Proposition
For $L=\{2,4,6, \ldots\}$,

$$
\mathrm{bp}_{L}\left(K_{n}\right)=\left\lceil\log _{2} n\right\rceil+1
$$

$L=\{\lambda\}$

- Now let's consider the list $L=\{\lambda\}$ for a fixed λ.
- $\mathrm{bp}_{L}\left(K_{n}\right)=\operatorname{bp}\left(\lambda K_{n}\right)$ where λK_{n} is the complete multigraph.
- The lower bound is $\operatorname{bp}_{\{\lambda\}}\left(K_{n}\right) \geq n-1$. The proof is the same as for the Graham-Pollak Theorem.
- de Caen conjectured in 1993 that for any λ, for every n larger than some $N_{\lambda}, \mathrm{bp}_{\{\lambda\}}\left(K_{n}\right)=n-1$.
- This conjecture is true for $\lambda \leq 18$.
- Perhaps we can use the recursion to show $\operatorname{bp}_{\{\lambda\}}\left(K_{n}\right) \leq n+c_{\lambda}$ for n large enough.

Graham-Pollak for hypergraphs

- We can also generalize the Graham-Pollak Theorem to hypergraphs.
- We ask, how many complete r-partite r-uniform hypergraphs are necessary to partition the edge set of the complete r-uniform hypergraph on n vertices.
- We denote this quantity by $f_{r}(n)$.

Graham-Pollak for hypergraphs

- $f_{2}(n)=\operatorname{bp}\left(K_{n}\right)=n-1$.
- $f_{3}(n)=n-2$.
- $f_{r}(n)=\Theta\left(n^{\lceil r / 2\rceil}\right)$.
- In general, this problem seems very hard.

Graham-Pollak for hypergraphs

Theorem - Cioabă, Kündgen, Verstraëte (2009)

$$
\frac{2\binom{n-1}{k}}{\binom{2 k}{k}} \leq f_{2 k}(n)
$$

and

$$
f_{2 k}(n) \leq f_{2 k+1}(n+1) \leq\binom{ n-k}{k}
$$

This improved a result of Alon.

Graham-Pollak for hypergraphs

Theorem - Cioabă and MT (2012)

$$
f_{2 k}(2 k+2)=\left\lceil\frac{2 k^{2}+5 k+3}{4}\right\rceil
$$

and

$$
f_{2 k+1}(2 k+3)=\left\lceil\frac{2 k^{2}+5 k+3}{4}\right\rceil .
$$

This can be used to improve the general upper bound by a lower order term.

Open Problems

- For any fixed λ, can we prove $\operatorname{bp}_{\{\lambda\}}\left(K_{n}\right) \leq n+c_{\lambda}$?
- For fixed L, is $\mathrm{bp}_{L}\left(K_{n}\right)=\Theta\left(n^{1 / k}\right)$ for some fixed k ?
- What is $f_{4}(n)$?

