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Independent sets in polarity graphs

Michael Tait∗ Craig Timmons†

Abstract

Given a projective plane Σ and a polarity θ of Σ, the corresponding polarity
graph is the graph whose vertices are the points of Σ, and two distinct points p1
and p2 are adjacent if p1 is incident to pθ2 in Σ. A well-known example of a polarity
graph is the Erdős-Rényi orthogonal polarity graph ERq, which appears frequently
in a variety of extremal problems. Eigenvalue methods provide an upper bound
on the independence number of any polarity graph. Mubayi and Williford showed
that in the case of ERq, the eigenvalue method gives the correct upper bound in
order of magnitude. We prove that this is also true for other families of polarity
graphs. This includes a family of polarity graphs for which the polarity is neither
orthogonal nor unitary. We conjecture that any polarity graph of a projective
plane of order q has an independent set of size Ω(q3/2). Some related results are
also obtained.

1 Introduction

The use of finite geometry to construct graphs with interesting properties has a rich
history in graph theory. One of the most well-known constructions is due to Brown
[6], and Erdős, Rényi, and Sós [11] who used an orthogonal polarity of a Desarguesian
projective plane to give examples of graphs that give an asymptotically tight lower bound
on the Turán number of the 4-cycle. Later these same graphs were used to solve other
extremal problems in a variety of areas such as Ramsey theory [3], [15], hypergraph Turán
theory [16], and even the Cops and Robbers game on graphs [5]. While our focus is not
on the graphs of [6] and [11], we take a moment to define them. Let q be a power of
a prime and PG(2, q) be the projective geometry over the 3-dimensional vector space
F
3
q. We represent the points of PG(2, q) as non-zero vectors (x0, x1, x2) where xi ∈ Fq.

Two vectors (x0, x1, x2) and (y0, y1, y2) are equivalent if λ(x0, x1, x2) = (y0, y1, y2) for
some λ ∈ Fq\{0}. The Erdős-Rényi orthogonal polarity graph, denoted ERq, is the graph
whose vertices are the points of PG(2, q). Two distinct vertices (x0, x1, x2) and (y0, y1, y2)
are adjacent if and only if x0y0 + x1y1 + x2y2 = 0.

The graph ERq has been studied as an interesting graph in its own right. Parsons
[19] determined the automorphism group of ERq and obtained several other results. In
particular, Parsons showed that for q ≡ 1(mod 4), ERq contains a

1
2
(q+1)-regular graph

on
(

q
2

)

vertices with girth 5. This construction gives one of the best known lower bounds
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on the maximum number of edges in an n-vertex graph with girth 5. It is still an open
problem to determine this maximum, and for more on this problem, see [1]; especially
their Conjecture 1.7 and the discussion preceding it. Bachratý and Širáň [4] reproved
several of the results of [19] and we recommend [4] for a good introduction to the graph
ERq. They also used ERq to construct vertex-transitive graphs with diameter two.

Along with the automorphism group of a graph, two other important graph parame-
ters are the independence number and the chromatic number. At this time we transition
to a more general setting as many of the upper bounds on the independence number of
ERq are true for a larger family of graphs. Let Σ = (P,L, I) be a projective plane of
order q. A bijection θ : P ∪ L → P ∪ L is a polarity if θ(P) = L, θ(L) = P, θ2 is the
identity map, and pIl if and only if lθIpθ. A point p ∈ P is called an absolute point
if pIpθ. A classical result of Baer is that any polarity of a projective plane of order q
has at least q + 1 absolute points. A polarity with q + 1 points is called an orthogonal
polarity, and such polarities exist in the Desarguesian projective plane as well as in other
non-Desarguesian planes. For more on polarities see [14], Chapter 12. Given a projective
plane Σ = (P,L, I) of order q and an orthogonal polarity θ, the corresponding orthogonal
polarity graph G(Σ, θ) is the graph with vertex set P where two distinct vertices p1 and
p2 are adjacent if and only if p1Ipθ2. Let G◦(Σ, θ) be the graph obtained from G(Σ, θ) by
adding loops to the absolute points of θ. The integer q + 1 is an eigenvalue of G◦(Σ, θ)
with multiplicity 1, and all other eigenvalues are

√
q or −√

q. A result of Hoffman [13]
implies

α(G◦(Σ, θ)) ≤ −(q2 + q + 1)(−q1/2)

q + 1−√
q

(1)

which gives α(G(Σ, θ)) ≤ q3/2+ q1/2+1. An improved estimate in the case that q is even
was obtained by Hobart and Williford [12] using association schemes. They conjectured
that the upper bound (1) can be improved to

α(G(Σ, θ)) ≤ q(q1/2 + 1)− 2(q1/2 − 1)(q + q1/2)1/2

but this is still open. Mubayi and Williford [18] showed that the upper bound (1) gives
the correct order of magnitude for α(ERq). One of the results of [18] is that

α(ERq2) ≥
1

2
q3 +

1

2
q2 + 1 (2)

whenever q is a power of an odd prime. Their construction can be adapted in a straight-
forward manner to obtain the following lower bound on the independence number of
wider class of orthogonal polarity graphs which we introduce now and will be the focus
of much of our investigations. We remark that the study of polarity graphs coming from
non-Desarguesian planes was suggested in [4].

Let q be a power of an odd prime and f(X) ∈ Fq[X ]. The polynomial f(X) is a
planar polynomial if for each a ∈ F

∗
q, the map

x 7→ f(x+ a)− f(x)

is a bijection on Fq. Planar polynomials were introduced by Dembowski and Ostrom [10]
in their study of projective planes of order q that admit a collineation group of order
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q2. Given a planar polynomial f(X) ∈ Fq[X ], one can construct a projective plane as
follows. Let P = {(x, y) : x, y ∈ Fq} ∪ {(x) : x ∈ Fq} ∪ {(∞)}. For a, b, c ∈ Fq, let

[a, b] = {(x, f(x− a) + b) : x ∈ Fq} ∪ {(a)},
[c] = {(c, y) : y ∈ Fq} ∪ {(∞)},
[∞] = {(c) : c ∈ Fq} ∪ {(∞)}.

Let L = {[a, b] : a, b ∈ Fq}∪{[c] : c ∈ Fq}∪{[∞]}. Define Πf to be the incidence structure
whose points are P, whose lines are L, and incidence I is given by containment. When
f is a planar polynomial, Πf is a projective plane. For instance if f(X) = X2 and q is
any power of an odd prime, Πf is isomorphic to the Desarguesian plane PG(2, q). For
other examples, see [7].

Assume that f(X) ∈ Fq[X ] is a planar polynomial. The plane Πf possesses an
orthogonal polarity ω given by

(∞)ω = [∞], [∞]ω = (∞), (c)ω = [−c], [c]ω = (−c)

(x, y)ω = [−x,−y], and [a, b]ω = (−a,−b)

where a, b, c ∈ Fq. We write Gf for the corresponding orthogonal polarity graph. This
is the graph whose vertices are the points of Πf and two distinct vertices p1 and p2 are
adjacent in Gf if and only if p1 is incident to pω2 in Πf . For vertices of the form (x, y)
the adjacency relation is easily described in terms of f . The distinct vertices (x1, y1) and
(x2, y2) are adjacent if and only if

f(x1 + x2) = y1 + y2.

Our first result is a generalization of (2) to orthogonal polarity graphs which need
not come from a Desarguesian plane.

Theorem 1.1 If q is a power of an odd prime and f(X) ∈ Fq2 [X ] is a planar polynomial
all of whose coefficients belong to the subfield Fq, then

α(Gf) ≥
1

2
q2(q − 1)

Even though we have the restriction that the coefficients of f belong to Fq, many of
the known examples of planar functions have this property. Most of the planar functions
discussed in [7], including those that give rise to the famous Coulter-Matthews plane,
satisfy our requirement.

It is still an open problem to determine an asymptotic formula for the independence
number of ERp for odd prime p. However, given the results of [18] and Theorem 1.1, it
would be quite surprising to find an orthogonal polarity graph of a projective plane of
order q whose independence number is o(q3/2). We believe that the lower bound Ω(q3/2)
is a property shared by all polarity graphs, including polarity graphs that come from
polarities which are not orthogonal.
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Conjecture 1.2 If G(Σ, θ) is a polarity graph of a projective plane of order q, then

α(G(Σ, θ)) = Ω(q3/2).

There are polarity graphs which are not orthogonal polarity graphs for which Con-
jecture 1.2 holds. If G(Σ, θ) is a polarity graph where θ is unitary and Σ has order q,
then α(G(Σ, θ)) ≥ q3/2 + 1. Indeed, the absolute points of any polarity graph form an
independent set and a unitary polarity has q3/2 + 1 absolute points. In Section 3 we
show that there is a polarity graph G(Σ, θ) where θ is neither orthogonal or unitary and
Conjecture 1.2 holds.

Theorem 1.3 Let p be an odd prime, n ≥ 1 be an integer, and q = p2n. There is a
polarity graph G(Σ, θ) such that Σ has order q, θ is neither orthogonal nor unitary, and

α(G(Σ, θ)) ≥ 1

2
q(
√
q − 1).

In connection with Theorem 1.1 and Conjecture 1.2, we would like to mention the
work of De Winter, Schillewaert, and Verstraëte [8] and Stinson [21]. In these papers the
problem of finding large sets of points and lines such that there is no incidence between
these sets is investigated. Finding an independent set in a polarity graph is related to
this problem as an edge in a polarity graph corresponds to an incidence in the geometry.
The difference is that when one finds an independent set in a polarity graph, choosing
the points determines the lines. In [8] and [21], one can choose the points and lines
independently.

As mentioned above, Conjecture 1.2 holds for unitary polarity graphs as the absolute
points form an independent set. Mubayi and Williford [18] asked whether or not there is
an independent set in the graph Uq of size Ω(q

3/2) that contains no absolute points. For q
a square of a prime power, the graph Uq has the same vertex set as ERq and two distinct

vertices (x0, x1, x2) and (y0, y1, y2) are adjacent if and only if x0y
√
q

0 + x1y
√
q

1 + x2y
√
q

2 = 0.
We could not answer their question, but we were able to produce an independent set of
size Ω(q5/4) that contains no absolute points. We remark that a lower bound of Ω(q) is
trivial.

Theorem 1.4 Let q be an even power of an odd prime. The graph Uq has an independent
set I that contains no absolute points and

|I| ≥ 0.19239q5/4 −O(q).

Related to the independence number is the chromatic number. In [20], it is shown
that χ(ERq2) ≤ 2q+O( q

log q
) whenever q is a power of an odd prime. Here we prove that

this upper bound holds for another family of orthogonal polarity graphs.

Definition 1.5 Let p be an odd prime. Let n and s be positive integers such that s < 2n
and 2n

s
is an odd integer. Let d = ps and q = pn. We call the pair {q, d} an admissible

pair.
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If {q, d} is an admissible pair, then the polynomial f(X) = Xd+1 ∈ Fq2 [X ] is a planar
polynomial. For a nice proof, see Theorem 3.3 of [7].

Theorem 1.6 Let q be a power of an odd prime and {q, d} be an admissible pair. If
f(X) = Xd+1, then

χ(Gf ) ≤ 2q +O

(

q

log q

)

.

The eigenvalue bound (1) gives a lower bound of χ(Gf ) ≥ q4+q2+1
q3+q+1

so that the leading
term in the upper bound of Theorem 1.6 is best possible up to a constant factor. Not
only does this bound imply that α(Gf) ≥ 1

2
q3−o(q3), but shows that most of the vertices

of Gf can be partitioned into large independent sets.
The technique that is used to prove Theorem 1.6 is the same as the one used in

[20] and can be applied to other orthogonal polarity graphs. In Section 6, we sketch an
argument that the bound of Theorem 1.6 also holds for a plane coming from a Dickson
commutative division ring (see [14]). It is quite possible that the technique applies to
more polarity graphs, but in order to obtain a general result, some new ideas will be
needed. Furthermore, showing that every polarity graph of a projective plane of order
q has chromatic number at most O(

√
q) is a significant strengthening of Conjecture 1.2.

When p is prime, it is still unknown whether or not χ(ERp) = O(
√
p).

2 Proof of Theorem 1.1

Let q be a power of an odd prime and f(X) ∈ Fq2 [X ] be a planar polynomial, all of
whose coefficients are in the subfield Fq. Let Gf be the orthogonal polarity graph whose
construction is given before the statement of Theorem 1.1. Partition F

∗
q into two sets F+

q

and F
−
q where a ∈ F

+
q if and only if −a ∈ F

−
q . Let µ be a root of an irreducible quadratic

over Fq and so Fq2 = {a+ µb : a, b ∈ Fq}. Let

I = {(x, y + zµ) : x, y ∈ Fq, z ∈ F
+
q }.

Note that |I| = 1
2
q2(q−1) and we claim that I is an independent set. Suppose (x1, y1+z1µ)

and (x2, y2 + z2µ) are distinct vertices in I and that they are adjacent. Then

f(x1 + x2) = y1 + y2 + (z1 + z2)µ. (3)

The left-hand side of (3) belongs to Fq since the coefficients of f are in Fq and x1+x2 ∈ Fq.
The right-hand side of (3) is not in Fq since z1 + z2 6= 0. We have a contradiction so no
two vertices in I are adjacent.

3 Proof of Theorem 1.3

Let p be an odd prime, n ∈ N, and q = p2n. Let {1, λ} be a basis for a 2-dimensional
vector space over Fq. Let σ : Fq → Fq be the map xσ = xpn. Observe that σ is a field
automorphism of order 2, and the fixed elements of σ are precisely the elements of the
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subfield Fpn in Fq. Let θ be a generator of F
∗
q which is the group of non-zero elements of Fq

under multiplication. Let D be the division ring whose elements are {x+ λy : x, y ∈ Fq}
where addition is done componentwise, and multiplication is given by the rule

(x+ λy) · (z + λt) = xz + θtyσ + λ(yz + xσt).

Here we are following the presentation of [14]. Define the map α : D → D by

(x+ λy)α = x+ λyσ.

Let ΠD = (P,L, I) be the plane coordinatized by D. That is,

P = {(x, y) : x, y ∈ D} ∪ {(x) : x ∈ D} ∪ {(∞)}

and
L = {[m, k] : m, k ∈ D} ∪ {[m] : m ∈ D} ∪ {[∞]}

where

[m, k] = {(x, y) : m · x+ y = k} ∪ {(m)},
[k] = {(k, y) : y ∈ D} ∪ {(∞)},
[∞] = {(m) : m ∈ D} ∪ {(∞)}.

The incidence relation I is containment. A polarity of ΠD is given by the map ω where

(∞)ω = [∞], [∞]ω = (∞), (m)ω = [mα], [k]ω = (kα)

and
(x, y)ω = [xα,−yα], [m, k] = (mα,−kα).

The polarity ω has |D|5/4+1 absolute points. Let G(ΠD, ω) be the corresponding polarity
graph.

We now derive an algebraic condition for when the distinct vertices

u = (x1 + λx2, y1 + λy2) and v = (z1 + λz2, t1 + λt2)

are adjacent. The vertex u is adjacent to v if and only if uIvω. This is equivalent to

(x1 + λx2, y1 + λy2)I[z1 + λ(z2)
σ,−t1 + λ(−(t2)

σ)]

which in turn, is equivalent to

(z1 + λ(z2)
σ) · (x1 + λx2) = −y1 − t1 + λ(−y2 − (t2)

σ). (4)

Using the definition of multiplication in D, (4) can be rewritten as

z1x1 + θx2z2 + λ((z2)
σx1 + (z1)

σx2) = −y1 − t1 + λ(−y2 − (t2)
σ).

This gives the pair of equations

x1z1 + θx2z2 = −y1 − t1 (5)
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and
x1(z2)

σ + x2(z1)
σ = −y2 − (t2)

σ.

Let �q be the set of nonzero squares in Fq. Note that any element of Fpn is a square
in Fq. Define

I = {(x1 + λx2, y1 + λy2) : x1, y1 ∈ Fpn, x2 ∈ �q, y2 ∈ Fq}.

Then |I| = 1
2
(q − 1)q(pn)2 = 1

2
q2(q − 1). We now show that I is an independent set.

Suppose that (x1 + x2λ, y1 + y2λ) and (z1 + z2λ, t1 + t2λ) are distinct vertices in I that
are adjacent. Then (5) holds so

θ = (x2z2)
−1(−y1 − t1 − x1z1). (6)

The left hand side of (6) is not a square in Fq. Since x2 and z2 belong to �q, we have
that (x2z2)

−1 is a square in Fq. Since y1, t1, x1, z1 ∈ Fpn, we have that −y1 − t1 − x1z1 is
in Fpn and thus is a square in Fq. We conclude that the right hand side of (6) is a square.
This is a contradiction and so I must be an independent set. This shows that

α(G(ΠD, ω)) ≥
1

2
q2(q − 1).

4 Proof of Theorem 1.4

Let p be an odd prime, n ∈ N, and q = p2n. Let θ be a generator of F∗
q . The field Fq

contains a subfield with
√
q elements and we write F√

q for this subfield. We will use the

fact that x
√
q = x if and only if x ∈ F√

q and that the characteristic of Fq is a divisor of√
q without explicitly saying so.
Let Uq be the graph whose vertex set is V (ERq) and two vertices (x0, x1, x2) and

(y0, y1, y2) are adjacent if and only if

x0y
√
q

0 + x1y
√
q

1 + x2y
√
q

2 = 0.

In [18], it is shown that Uq has an independent set J of size q3+1. This independent set
consists of the absolute points in Uq; namely

J = {(x0, x1, x2) : x
√
q+1

0 + x
√
q+1

1 + x
√
q+1

2 = 0}.

To find an independent set in Uq with no absolute points and size Ω(q5/4), we will
work with a graph that is isomorphic to Uq. Let U∗

q be the graph whose vertex set is
V (ERq) where (x0, x1, x2) and (y0, y1, y2) are adjacent if and only if

x0y
√
q

2 + x2y
√
q

0 = x1y
√
q

1 .

The proof of Proposition 3 of [18] is easily adapted to prove the following.

Lemma 4.1 The graph Uq is isomorphic to the graph U∗
q .
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For any µ ∈ Fq\F√
q, we have Fq = {a+ bµ : a, b ∈ F√

q}. The next lemma shows that
we can find a µ that makes many of our calculations significantly easier.

Lemma 4.2 There is a µ ∈ Fq\F√
q such that µ

√
q + µ = 0.

Proof. Let µ = θ
1

2
(
√
q+1). Since F

∗√
q = 〈θ

√
q+1〉, we have that µ /∈ F√

q. Using the fact

that −1 = θ
1

2
(q−1), we find that

µ
√
q + µ = θ

1

2

√
q(
√
q+1) + θ

1

2
(
√
q+1) = θ

1

2

√
q(
√
q+1) − θ

1

2
(q−1)+ 1

2
(
√
q+1)

= θ
1

2
(q+

√
q) − θ

1

2
(q+

√
q) = 0.

For the rest of this section we fix a µ ∈ Fq\F√
q that satisfies the statement of Lemma

4.2. Given c ∈ F√
q, define

Xc = {(1, a, b+ cµ) : a, b ∈ F√
q}.

Lemma 4.3 If c1 and c2 are elements of F√
q with c1 6= c2, then the graph U∗

q has no
edge with one endpoint in Xc1 and the other in Xc2.

Proof. Suppose that (1, a1, b1+ c1µ) is adjacent to (1, a2, b2 + c2µ) where ai, bi, ci ∈ F√
q.

By definition of adjacency in U∗
q ,

b2 + c2µ
√
q + b1 + c1µ = a1a2.

By Lemma 4.2, this can be rewritten as

(c1 − c2)µ = a1a2 − b1 − b2. (7)

The right hand side of (7) belongs to the subfield F√
q. Therefore, c1 − c2 = 0 since

µ /∈ F√
q.

Now we consider the subgraph U∗
q [Xc] where c ∈ F√

q. The vertex set of U∗
q [Xc] is

{(1, a, b+ cµ) : a, b ∈ F√
q}

and two vertices (1, a1, b1 + cµ) and (1, a2, b2 + cµ) are adjacent if and only if

b2 + c(µ
√
q + µ) + b1 = a1a2.

By Lemma 4.2, this is equivalent to

b2 − a1a2 + b1 = 0. (8)

Let ER∗√
q be the graph whose vertex set is V (ER√

q) and (x0, x1, x2) is adjacent to

(y0, y1, y2) if and only if
x0y2 − x1y1 + x2y0 = 0.

8



Proposition 3 of [18] shows that ER∗√
q is isomorphic to ER√

q. It follows from (8) that

the graph U∗
q [Xc] is isomorphic to the subgraph of ER∗√

q induced by {(1, x1, x2) : x1, x2 ∈
F√

q}. Note that ER∗√
q has exactly

√
q + 1 vertices more than U∗

q [Xc]. By Theorem 5 of

[18], we can find an independent set in U∗
q [Xc] with at least .19239q3/4− q1/2−1 vertices.

Call this independent set Ic.
We want to throw away the absolute points in U∗

q that are in Ic. In U∗
q [Xc], the vertex

(1, a, b+ cµ) is an absolute point if and only if

b+ cµ+ b+ cµ
√
q = a2

which, again by Lemma 4.2, is equivalent to

2b = a2.

There are
√
q choices for a and a given a uniquely determines b. Thus Ic contains at

most q1/2 absolute points in Uq. Let Jc be the set Ic with the absolute points removed
so that |Jc| ≥ .19239q3/4 − 2q1/2 − 1.

Define
I =

⋃

c∈F√

q

Jc.

By Lemma 4.3, I is an independent set in U∗
q . Observe that

|I| ≥ √
q(0.19239q3/4 − 2q1/2 − 1) = 0.19239q5/4 −O(q)

and I contains no absolute points.
We note that when q is a fourth power, the coefficient 0.19239 may be raised to 1

2
, as

Theorem 5 in [18] is stronger in this case.

5 Proof of Theorem 1.6

Let s and n be positive integers with 2n
s

= r ≥ 3 an odd integer. Let q = pn, d = ps,
and note that {q, d} is an admissible pair. Let F∗

q2 be the non-zero elements of Fq2 and
θ be a generator of the cyclic group F

∗
q2. Write Fq and Fd for the unique subfields of Fq2

of order q and d, respectively. An identity that will be used is

p2n − 1

ps − 1
= (ps)r−1 + (ps)r−2 + · · ·+ ps + 1.

It will be convenient to let

t =
p2n − 1

ps − 1
(9)

and observe that t is odd since r = 2n
s
is odd.

Lemma 5.1 There is a µ ∈ Fq2\Fq such that when µd is written in the form µd = u1+u2µ
with u1, u2 ∈ Fq, the element u2 is a (d− 1)-th power.
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Proof. Let h(X) = Xd + (θq+1)d−1X . We claim that the roots of h are the elements in
the set Z = {0} ∪ {θq+1+it : 0 ≤ i ≤ d− 2}. Clearly 0 is a root. Let 0 ≤ i ≤ d− 2. Note
that since 2n = sr,

dt ≡ ps
(

(ps)r−1 + (ps)r−2 + · · ·+ ps + 1
)

≡ p2n + (ps)r−1 + · · ·+ p2s + ps

≡ 1 + (ps)r−1 + · · ·+ p2s + ps ≡ t(mod p2n − 1).

This implies d(q + 1 + it) ≡ (q + 1)(d− 1) + (q + 1) + it(mod q2 − 1) so that

(θq+1+it)d − (θq+1)d−1θq+1+it = 0.

We conclude that the roots of h are the elements in Z.
Let µ = θq+1+t. The non-zero elements of the subfield Fq are the elements of the

subgroup 〈θq+1〉 in F
∗
q2. Since t is odd and q+1 is even, q+1+ t is not divisible by q+1

thus µ /∈ Fq. Let u2 = (θq+1)d−1 and u1 = 0. We have

0 = h(µ) = µd − (θq+1)d−1µ = µd − u1 − u2µ

so µd = u1 + u2µ. By construction, µ ∈ Fq2\Fq, µ
d = u1 + u2µ with u1, u2 ∈ Fq, and u2

is a (d− 1)-th power.

The next lemma is known (see Exercise 7.4 in [17]). A proof is included for complete-
ness.

Lemma 5.2 If u2, δ ∈ F
∗
q2 and u2 is a (d−1)-th power, then for any ξ ∈ Fq2, the equation

Xd + u2δ
d−1X = ξ

has a unique solution in Fq2.

Proof. Let u2, δ ∈ F
∗
q2 and g(X) = Xd + u2δ

d−1X . The polynomial g is a permutation
polynomial if and only if the only root of g is 0 (see Theorem 7.9 of [17]). If g(X) = 0,
then X(Xd−1 + u2δ

d−1) = 0. It suffices to show that −u2δ
d−1 is not a (d − 1)-th power

of any element of Fq2 as this would imply that the equation Xd−1 + u2δ
d−1 = 0 has no

solutions. By hypothesis, u2 = wd−1 for some w ∈ F
∗
q2 . Since −1 is not a (d − 1)-th

power, the product −u2δ
d−1 = −(wδ)d−1 is not a (d− 1)-th power. We conclude that g

is a permutation polynomial on Fq2 . In particular, given any ξ ∈ Fq2, there is a unique
solution to the equation Xd + u2δ

d−1X = ξ.

For the rest of this section, we fix a µ ∈ Fq2\Fq that satisfies the conclusion of Lemma
5.1; that is,

µd = u1 + u2µ

where u1, u2 ∈ Fq and u2 is a (d− 1)-th power in Fq2. Let

µd+1 = w1 + w2µ
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where w1, w2 ∈ Fq. We fix a partition of F∗
q into two sets

F
∗
q = F

+
q ∪ F

−
q (10)

where a ∈ F
+
q if and only if −a ∈ F

−
q .

It will be convenient to work with a graph that is isomorphic to a large induced
subgraph of Gf . By Lemma 5.2, the map x 7→ xd+x is a permutation on Fq2 . Therefore,
every element of Fq2 can be written in the form ad + a for some a ∈ Fq2 and this
representation is unique. Let Aq2,d be the graph with vertex set Fq2 × Fq2 where distinct
vertices (ad + a, x) and (bd + b, y) are adjacent if and only if

adb+ abd = x+ y.

Working with this equation defining our adjacencies will be particularly helpful for the
rather technical Lemma 5.8 below.

Lemma 5.3 The graph Aq2,d is isomorphic to the subgraph of Gf induced by Fq2 × Fq2.

Proof. One easily verifies that the map τ : V (Aq2,d) → Fq2 × Fq2 defined by

τ((ad + a, x)) = (a, x+ ad+1)

is a graph isomorphism from Aq2,d to the subgraph of Gf induced by Fq2 × Fq2 .

Lemma 5.4 If
I+ = {(ad + a, x1 + x2µ) : a, x1 ∈ Fq, x2 ∈ F

+
q },

then I+ is an independent set in the graph Aq2,d. The same statement holds with I− and
F
−
q in place of I+ and F

+
q , respectively.

Proof. Suppose that (ad + a, x1 + x2µ) is adjacent to (bd + b, y1 + y2µ) where a, b ∈ Fq.
The left hand side of

adb+ abd = (x1 + y1) + (x2 + y2)µ

is in Fq so x2 + y2 = 0. If x2, y2 ∈ F
+
q , then x2 + y2 6= 0 and so no two vertices in I+ can

be adjacent. Similarly, no two vertices in I− can be adjacent.

Lemma 5.5 For any k = αd + α ∈ Fq2, the map

φk((a
d + a, x)) = (ad + a+ k, x+ adα+ aαd + αd+1)

is an automorphism of the graph Aq2,d.

Proof. The vertex φk((a
d + a, x)) is adjacent to φk((b

d + b, y)) if and only if

v = (ad + a + αd + α, x+ adα + aαd + αd+1)

is adjacent to
w = (bd + b+ αd + α, y + bdα + bαd + αd+1).

11



Since d is a power of p, v = ((a + α)d + (a+ α), x+ adα + aαd + αd+1). Similarly,

w = ((b+ α)d + (b+ α), y + bdα + bαd + αd+1).

From this we see that v is adjacent to w if and only if

(a+ α)d(b+ α) + (a+ α)(b+ α)d =

x+ adα+ aαd + αd+1 + y + bdα+ bαd + αd+1.
(11)

A routine calculation shows that (11) is equivalent to the equation adb + abd = x + y
which holds if and only if (ad + a, x) is adjacent to (bd + b, y) in Aq2,d.

Let J = I+ ∪ I− and observe that J = {(ad + a, x1 + x2µ) : a, x1 ∈ Fq, x2 ∈ F
∗
q}. Let

K =
⋃

β∈Fq

φ(βµ)d+(βµ)(J).

Lemma 5.6 If Aq2,d[K] is the subgraph of Aq2,d induced by K, then

χ(Aq2,d[K]) ≤ 2q.

Proof. By Lemma 5.4, the vertices in J may be colored using at most 2 colors. By
Lemma 5.5, the vertices in φk(J) can also be colored using at most 2 colors. Since K is
the union of q sets of the form φk(J) where k ∈ Fq2 , we may color K using at most 2q
colors.

Lemma 5.6 shows that we can color all but at most O(q3) vertices of Aq2,d with at
most 2q colors. We now show that the remaining vertices can be colored with o(q) colors.
Before stating the next lemma we recall that µd = u1 + u2µ and we let µd+1 = w1 +w2µ
where u1, u2, w1, w2 ∈ Fq.

Lemma 5.7 If X = (Fq2 × Fq2)\K, then

X = {((a+ βµ)d + (a+ βµ), t1 + (adβ + aβdu2 + βd+1w2)µ) : a, β, t1 ∈ Fq}.

Proof. For any β ∈ Fq, the set φ(βµ)d+(βµ)(J) can be written as

{(ad + a + (βµ)d + (βµ), x1 + x2µ+ ad(βµ) + a(βµ)d + (βµ)d+1) : a, x1 ∈ Fq, x2 ∈ F
∗
q}.

Let (s1+ s2µ, t1+ t2µ) ∈ Fq2 ×Fq2 where s1, s2, t1, t2 ∈ Fq. The vertex (s1+ s2µ, t1+ t2µ)
is in K if we can find a, x1, β ∈ Fq and x2 ∈ F

∗
q such that

s1 + s2µ = (a+ βµ)d + a+ βµ, (12)

t1 + t2µ = x1 + x2µ+ ad(βµ) + a(βµ)d + (βµ)d+1. (13)

Since every element of Fq2 can be written as zd + z for some z ∈ Fq2 , we can write
s1 + s2µ = zd + z and then choose a and β in Fq so that z = a+ βµ. With this choice of
a and β, equation (12) holds.
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Since µd+1 = w1 + w2µ, equation (13) can be rewritten as

t1 + t2µ = (x1 + aβdu1 + βd+1w1) + (x2 + adβ + aβdu2 + βd+1w2)µ. (14)

Let x1 = t1 − aβdu1 − βd+1w1. If t2 6= adβ + aβdu2 + βd+1w2, then we can take x2 =
t2 − adβ − aβdu2 − βd+1w2 and (13) holds. Therefore, the vertices in Fq2 × Fq2 not in K
are those vertices in the set

{((a+ βµ)d + (a+ βµ), t1 + (adβ + aβdu2 + βd+1w2)µ) : a, β, t1 ∈ Fq}.

Lemma 5.8 If Aq2,d[X ] is the subgraph of Aq2,d induced by X = (Fq2 × Fq2)\K, then

χ(Aq2,d[X ]) = O

(

q

log q

)

.

Proof. For β ∈ Fq, partition X into the sets Xβ where

Xβ = {((a+ βµ)d + (a + βµ), t1 + (adβ + aβdu2 + βd+1w2)µ) : a, t1 ∈ Fq}.

Fix a β ∈ Fq and a vertex

v = ((a+ βµ)d + (a+ βµ), t1 + (adβ + aβdu2 + βd+1w2)µ)

in Xβ. Let γ ∈ Fq. We want to count the number of vertices

w = ((x+ γµ)d + (x+ γµ), y1 + (xdγ + xγdu2 + γd+1w2)µ)

in Xγ that are adjacent to v. The vertices v and w are adjacent if and only if

(a+ βµ)d(x+ γµ) + (a+ βµ)(x+ γµ)d

= t1 + y1 + (adβ + aβdu2 + βd+1w2 + xdγ + xγdu2 + γd+1w2)µ.
(15)

If γ = β, then we can choose x ∈ Fq in q different ways and the above equation uniquely
determines y1. We conclude that the vertex v ∈ Xβ has at most q other neighbors in Xβ.

Assume now that γ 6= β. We need to count how many x, y1 ∈ Fq satisfy (15). A
computation using the relations µd = u1 + u2µ and µd+1 = w1 + w2µ shows that (15) is
equivalent to

adx+ adγµ+ βdx(u1 + u2µ) + βdγ(w1 + w2µ)

+axd + aγd(u1 + u2µ) + βxdµ+ βγd(w1 + w2µ)

= t1 + y1 + (adβ + aβdu2 + βd+1w2 + xdγ + xγdu2 + γd+1w2)µ.

Equating the coefficients of µ gives

adγ+βdxu2+βdγw2+aγdu2+βxd+βγdw2 = adβ+aβdu2+βd+1w2+xdγ+xγdu2+γd+1w2.
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This equation can be rewritten as

xd(γ − β) + x(γd − βd)u2 = ξ (16)

for some ξ ∈ Fq that depends only on a, γ, β, and µ. Since γ − β 6= 0, equation (16) is
equivalent to

xd + u2(γ − β)d−1x = ξ(γ − β)−1. (17)

By Lemma 5.2, (17) has a unique solution for x since u2 is a (d−1)-power and γ−β ∈ F
∗
q.

Once x is determined, (15) gives a unique solution for y1. Therefore, v has at most one
neighbor in Xβ. We conclude that the degree of v in X is at most q + (q − 1) < 2q.

The graph Aq2,d[X ] does not contain a 4-cycle and has maximum degree at most 2q.
This implies that the neighborhood of any vertex contains at most q edges. By a result

of Alon, Krivelevich, and Sudakov [2], the graph Aq2,d[X ] can be colored using O
(

q
log q

)

colors.

Proof of Theorem 1.6. Partition the vertex set of Aq2,d as

V (Aq2,d) = K ∪X.

By Lemmas 5.6 and 5.8, we can color the vertices in K ∪X using 2q +O
(

q
log q

)

colors.

This gives a coloring of the vertices in Fq2 × Fq2 in Gf and it only remains to color the
vertices in the set {(m) : m ∈ Fq2} ∪ {(∞)}.

The vertex (∞) is adjacent to (m) for every m ∈ Fq2 . Since Gf is C4-free, the
subgraph of Gf induced by the neighborhood of (∞) induces a a graph with maximum
degree at most 1. We may color the vertices in {(m) : m ∈ Fq2}∪{(∞)} using three new
colors not used to color Fq2 × Fq2 to obtain a 2q +O( q

log q
) coloring of Gf .

6 Dickson Commutative Division Rings

Let p be an odd prime, n > 1 be an integer, q = pn, and a be any element of Fq that is
not a square. Let 1 ≤ r < n be an integer. Let D be a 2-dimensional vector space over
Fq with basis {1, λ}. Define a product · on D by the rule

(x+ λy) · (z + λt) = xz + ayp
r

tp
r

+ λ(yz + st).

With this product and the usual addition, D is a commutative division ring (see [14],
Theorem 9.12 and note that it is common to call such a structure a semifield). We
can use D to define a projective plane Π (see [14], Theorem 5.2). This plane also has
an orthogonal polarity (see [14], page 248). Let GDq2 be the corresponding orthogonal
polarity graph. Using the argument of Section 5, one can prove that

χ(GDq2) ≤ 2q +

(

q

log q

)

.

A rough outline is as follows. Let ADq2 be the subgraph of GDq2 induced by the vertices

{((x1 + λx2, y1 + λy2) : x1, x2, y1, y2 ∈ Fq}.
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Partition F
∗
q into the sets F+

q and F
−
q where a ∈ F

+
q if and only if −a ∈ F

−
q . The sets

I+ = {(x2λ, y1 + y2λ) : x2, y1 ∈ Fq, y2 ∈ F
+
q }

and
I− = {(x2λ, y1 + y2λ) : x2, y1 ∈ Fq, y2 ∈ F

−
q }

are independent sets in GDq2. For any k ∈ Fq, the map

φk(x1 + λx2, y1 + λy2) = (x1 + λx2 + k, y1 + λy2 + kx1 + 2−1k2 + λx2k)

is an automorphism of AGq2.
Let J = I+ ∪ I− and K =

⋃

k∈Fq
φk(J) and observe that

K = {(k + x2λ, y1 + y2λ+ 2−1k2 + λx2k) : x1, y1, k ∈ Fq, y2 ∈ F
∗
q}.

If X = (D ×D)\K, then

X = {(s1 + s2λ, t1 + (s2s1)λ) : s1, s2, t1 ∈ Fq}.

It can then be shown that the subgraph of GDq2 induced by X has maximum degree at
most 2q. The remaining details are left to the reader.

7 Concluding Remark

The argument used to prove Theorem 1.4 can be extended to other unitary polarity
graphs. We illustrate with an example. Let a and e be integers with a 6≡ ±(mod 2e),
e ≡ 0(mod 4), and gcd(a, e) = 1. Let f : Fq → Fq be the polynomial f(X) = Xn where
n = 1

2
(3a + 1) and q = 3e. The map f is a planar polynomial and the corresponding

plane is the Coulter-Matthews plane [7]. This plane has a unitary polarity whose action
on the affine points and lines is given by

(x, y)θ = [−x
√
q,−y

√
q] and (a, b)θ = (−a

√
q,−b

√
q).

The proof of Theorem 1.4 can be modified to show that the corresponding unitary polarity
graph has an independent set of size 1

2
q5/4−o(q5/4) that contains no absolute points. The

reason for the condition e ≡ 0(mod 4) instead of e ≡ 0(mod 2), which is the condition
given in [7] for f to be planar, is that we need

√
q to be a square in order to apply

Theorem 1.1 to the subgraphs that correspond to the U∗
q [Xc] in the proof of Theorem

1.4.
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[11] P. Erdős, A. Rényi, V. T. Sós, On a problem of graph theory, Studia Sci. Math.
Hungar. 1 1966, 215-235.

[12] S. Hobart, J. Williford, The independence number for polarity graphs of even order
planes, J. Algebraic Combin. 38 (2013), no. 1, 57-64.

[13] A. J. Hoffman, On eigenvalues and colorings of graphs, 1970 Graph Theory and its
Applications (Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin,
Madison, Wis., 1969), Academic Press, New York.

[14] D. R. Hughes, F. C. Piper, Projective Planes, GTM Vol. 6, Springer-Verlag New-
York-Berlin, 1973.
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